
Introduction
PEC-CS-601G Parallel & Distributed System

Soumadip Biswas

Outline of the Course

● Course Webpage: https://soumadip.github.io/courses/DS/
● Broad overview

○ Introduce you to distributed system design
○ Algorithms and system design issues
○ Real world Examples

● Internals evaluation
○ Term projects, Case studies

● Reference books
○ Advanced Operating Systems by Mukesh Singhal and Niranjan Shivaratri
○ Distributed Systems: Principles and Paradigms by Andrew Tanenbaum and Maarten van

Steen
○ Distributed Database Systems by D.Bell and J. Grimson, Addison

https://soumadip.github.io/courses/DS/

What is a Distributed System?

“A distributed system is a system where I can’t get my work done
because a computer has failed that I’ve never even heard of.’’

 - Leslie Lamport

What is a Distributed System?

A network of autonomous
machines/devices that

communicate to perform
some task

Modes of communication

○ Message passing
○ Distributed Shared

Memory

Major Components

● Machines, Devices
○ PCs, servers, specialized

devices
○ Commonly called nodes

● Network
○ links, switches, routers

● Storage
○ local, distributed

● Systems software/ applications/
tools
○ Distributed OS, databases,

filesystems, load balancer, event,
performance monitoring tools,
security software…

○ Not all distributed system will need
all

● Middleware
● User applications

Advantages

● Resource Sharing
○ Example: share devices,

software, services…across
networks

● Better Performance
○ Example: Parallel execution of

tasks, load sharing between
multiple servers, data replication
closer to user….

● Fault Tolerance
○ Example: Increase system availability

by putting redundant/backup servers
● Handle inherently distributed data

○ Example: Internet routing, distributed
data mining

● Scalability
○ Example: add more servers as

needed if load increases

Common Characteristics

● Heterogeneous in many cases
○ Different architectures, operating

systems….
● Can be geographically distributed

○ Network delays play an important
role

● Faults are common
○ Larger the system is, more chance of

something failing at any one time

● Replication is very widely
used for better availability and
performance
○ Need for maintaining data

consistency
○ Trade-off between performance

and consistency

Examples of Distributed Systems

● Almost every large system that you
use is distributed

○ Online stores like Amazon, Flipkart,….
○ Content delivery services like Netflix,

Hotstar,…..
○ Social networks like Facebook,

Twitter,…
○ Google and its services
○ Cloud Services like Amazon AWS,

Microsoft Azure
○ Travel/Ticket booking services like

IRCTC, makeMyTrip, …
○ Internet!
○ IEM CRP

● Not all build/manage their own
distributed systems, rather use
services provided by others.

● We will learn more later

Why are They Harder to Design?

● Lack of global shared memory
○ Hard to find the global system state at

any point
● Lack of global clock

○ Events cannot be started at the same
time

○ Events cannot be ordered in time easily
● Hard to verify and prove

○ More complex atomicity issues
○ Arbitrary interleaving of actions makes

the system hard to verify

● Same problem is there for
multi-process programs on a single
machine

● Harder here due to communication
delays

Example: Lack of Global Memory

● Problem of Distributed
Search
○ A set of elements distributed

across multiple machines
○ A query comes at any one

machine A for an element X
○ Need to search for X in the

whole system

● Sequential algorithm is very
simple
○ Search and update done on

a single array in a single
machine

○ No. of elements also known
in a single variable

Example: Lack of Global Memory (contd.)

● How to send the query to all
other machines?

● Do all machines even know all
other machines?

● How to get back the result of the
search in each machine?

● Handling updates (both
add/delete of elements at a
machine and add/remove of
machines) – adds more
complexity

● Main problem

No one place (global memory)
that a machine can look up to
see the current system state

(what machines, what
elements, how many

elements)

Example: Lack of Global Clock

● Problem of Distributed Replication
○ 3 machines A, B, C have

copies of a data X, say
initialized to 1

○ Query/Updates can happen in
any m/c

○ Need to make the copies
consistent within short time in
case of update at any one
machine

● Naïve algorithm
○ On an update, a machine

sends the updated value
to the other replicas

○ A replica, on receiving an
update, applies it

Example: Atomicity Issues

● Problem of Symmetry Breaking
○ 2 nodes, each with a value 1
○ Need to get to a final state

with one node having value 0
and one node having value 1

Algorithm
● Each node sends a message to the

other to know its value
● Each node sets its own value to the

complement of the value received from
the other node if the two values are the
same

 – May never terminate if send-receive-set
is not atomic

Distributed Scheduler (not atomic) vs.
Central Scheduler (atomic)
 – Is a central scheduler in a distributed
system practical?

Distributed Algorithms

● Algorithms that run on distributed
systems
○ Algorithms in which every node

executes some program to
cooperatively do something

○ Program run by each node may
or may not be the same

● Distributed algorithms have been
designed for many many problems
○ For any problem you know, you

can ask “is there a distributed
algorithm for it?

● Systems can not run without
algorithms, so in any distributed
system you see, there are
distributed algorithms

● We will look at both algorithms
and system issues

Models for Distributed Algorithms

Informally, guarantees that one can
assume the underlying system will (or
will not!) give

● Topology : completely
connected, ring, tree, arbitrary,…

● Communication : shared
memory/message passing
(Reliable? Delay? FIFO?

● Broadcast / multicast?…)
● Synchronous / asynchronous

● Failure possible or not
○ What all can fail?
○ Failure models (crash,

omission, Byzantine,
timing,…)

● Unique Ids
● Other Knowledge : no. of nodes,

diameter
● Scheduler: Distributed, Central

Models for Distributed Algorithms (contd.)

● Less assumptions ⇒ weaker
model

● A distributed algorithm needs to
specify the model on which it is
supposed to work

● The model may not match the
underlying physical system
always

Complexity Measures

● Message complexity
○ Total no. of messages sent

● Communication complexity (aka.
Bit Complexity)
○ Total no. of bits sent

● Time complexity
○ For synchronous systems,

no. of rounds.
○ For asynchronous systems,

different definitions are there

● Space complexity
○ total no. of bits needed for

storage at all the nodes

Example: Distributed Search Again

● Assume that all elements are distinct
● Network represented by graph G with n nodes and m edges

Model 1: Asynchronous, completely connected topology, reliable communication

Algorithm:
● Send query to all neighbors
● Wait for reply from all, or till one node says Found
● A node, on receiving a query for X, does local search for X and
● replies Found/Not found

Worst case message complexity = 2(n – 1) per query

Example: Distributed Search Again

Problems!
● How long to wait for? No bound on message delay!
● Message can be lost again and again, so this still does not solve the problem.
● In fact, impossible to solve (may not terminate)!!

Model 2: Asynchronous, completely connected topology, unreliable communication

Algorithm:
● Send query to all neighbors
● Wait for reply from all, or till one node says Found
● A node, on receiving a query for X, does local search for X and replies
● Found/Not found.
● If no reply within some time, send query again

Example: Distributed Search Again

● Maximum one-way message delay = α
● Maximum search time at each machine = β

Model 3: Synchronous, completely connected topology, reliable communication

Algorithm:
● Send query to all neighbors
● Wait for reply from all for T = 2α + β, or till one node says Found
● A node, on receiving a query for X, does local search for X and replies Found if found,

does not reply if not found
● If no reply received within T, return “Not found”

Message complexity = n -1 if not found, n if found
Message complexity reduced, possibly at the cost of more time

Example: Distributed Search Again

● How to send the query to all?

Model 4: Asynchronous, reliable communication, but not completely connected

Algorithm:
● Querying node A sends query for X to all its neighbors
● Any other node, on receiving query for X, first searches for X. If found, send

back “Found” to A. If not, send back “Not found” to A, and also forward the
query to all its neighbors other than the one it received from (flooding)

● Eventually all nodes get it and reply

Message complexity – O(nm) (why?)

But are we done?

Suppose X is not there. A gets
many “Not found” messages.

● How does it know if all nodes
have replied? (Termination
Detection)

Lets change (strengthen) the
model ⇒

Suppose A knows n, the total number of nodes
● A can now count the number of messages

received. Termination if at least one “Found”
message, or n “Not found” messages

● Message complexity – O(nm)

Suppose A knows upper bound on network
diameter and synchronous system

● Can be done with O(m) messages only

Can you do it without changing the model?

So Which Model to Choose?

● Ideally, as close to the physical
system available as possible
○ The algorithm can directly run

on the system

● Should be implementable on the
physical system by additional
h/w-s/w
○ Ex., reliable communication

(say TCP) over an unreliable
physical system

● Sometimes, start with a strong model,
then weaken it
○ Easier to design algorithms on a

stronger model (more
guarantees from the system)

○ Helps in understanding the
behavior of the system

○ Can use this knowledge to then
design algorithms on the weaker
model

