FORMAL MODELS FOR MESSAGE PASSING SYSTEMS 13

Formally, the definition of an execution for the synchronous case is further con-
strained over the definition from the asynchronous case as follows. The sequence of
alternating configurations and events can be partitioned into disjoint rounds. A round
consists of a deliver event for every message in an outbuf variable, until all outbuf
variables are empty, followed by one computation event for every processor. Thus a
round consists of delivering all pending messages and then having every processor
take an internal computation step to process all the delivered messages.

An execution is admissible for the synchronous model if it is infinite. Because
of the round structure, this implies that every processor takes an infinite number
of computation steps and every message sent is eventually delivered. As in the
asynchronous case, assuming that admissible executions are infinite is a technical
convenience; termination of an algorithm can be handled as in the asynchronous
case.

Note that in a synchronous system with no failures, once the algorithm is fixed,
the only relevant aspect of executions that can differ is the initial configuration. In an
asynchronous system, there can be many different executions of the same algorithm,
even with the same initial configuration and no failures, because the interleaving of
processor steps and the message delays are not fixed.

2.1.2 Complexity Measures

We will be interested in two complexity measures, the number of messages and the
amount of time, required by distributed algorithms. For now, we will concentrate
on worst-case performance; later in the book we will sometimes be concerned with
expected-case performance.

To define these measures, we need a notion of the algorithm terminating. We
assume that each processor’s state set includes a subset of terminated states and each
processor’s transition function maps terminated states only to terminated states. We
say that the system (algorithm) has terminated when all processors are in terminated
states and no messages are in transit. Note that an admissible execution must still
be infinite, but once a processor has entered a terminated state, it stays in that state,
taking “dummy” steps.

The message complexity of an algorithm for either a synchronous or an asyn-
chronous message-passing system is the maximum, over all admissible executions of
the algorithm, of the total number of messages sent.

The natural way to measure time in synchronous systems ts simply to count the
number of rounds until termination. Thus the time complexity of an algorithm for
a synchronous message-passing system is the maximum number of rounds, in any
admissible execution of the algorithm, until the algorithm has terminated.

Measuring time in an asynchronous system is less straightforward. A common
approach, and the one we will adopt, is to assume that the maximum message delay in
any execution is one unit of time and then calculate the running time until termination.
To make this approach precise, we must introduce the notton of time into executions.

A timed execution is an execution that has a nonnegative real number assoctated
with each event, the zime at which that event occurs. The times must start at 0, must

14 BASIC ALGORITHMS IN MESSAGE-PASSING SYSTEMS

be nondecreasing, must be strictly increasing for each individual processor’, and
must increase without bound if the execution is infinite. Thus events in the execution
are ordered according to the times at which they occur, several events can happen at
the same time as long as they do not occur at the same processor, and only a finite
number of events can occur before any finite time.

We define the delay of a message to be the time that elapses between the com-
putation event that sends the message and the computation event that processes the
message. In other words, it consists of the amount of time that the message waits in
the sender’s outbuf together with the amount of time that the message waits in the
recipient’s inbuf.

The time complexity of an asynchronous algorithm is the maximum time until
termination among all timed admissible executions in which every message delay is
at most one. This measure still allows arbitrary interleavings of events, because no
lower bound is imposed on how closely events occur. It can be viewed as taking
any execution of the algorithm and normalizing it so that the longest message delay
becomes one unit of time.

2.1.3 Pseudocode Conventions

In the formal model just presented, an algorithm would be described in terms of state
transitions. However, we will seldom do this, because state transitions tend to be
more difficult for people to understand; in particular, flow of control must be coded
in a rather contrived way in many cases.

Instead, we will describe algorithms at two different levels of detail. Simple
algorithms will be described in prose. Algorithms that are more involved will also
be presented in pseudocode. We now describe the pseudocode conventions we will
use for synchronous and asynchronous message-passing algorithms.

Asynchronous algorithms will be described in an interrupt-driven fashion for each
processor. In the formal model, each computation event processes all the messages
waiting in the processor’s inbuf variables at once. For clarity, however, we will
generally describe the effect of each message individually. This is equivalent to the
processor handling the pending messages one by one in some arbitrary order; if more
than one message is generated for the same recipient during this process, they can be
bundled together into one big message. It is also possible for the processor to take
some action even if no message is received. Events that cause no message to be sent
and no state change will not be listed.

The local computation done within a computation event will be described in a style
consistent with typical pseudocode for sequential algorithms. We use the reserved
word “terminate” to indicate that the processor enters a terminated state.

An asynchronous algorithm will also work in a synchronous system, because a
synchronous system is a special case of an asynchronous system. However, we
will often be considering algorithms that are specifically designed for synchronous

l(.-r)mp(i) is considered to occur at p; and del(t, j, m) at both p; and p,.

BROADCAST AND CONVERGECAST ON A SPANNING TREE 15

systems. These synchronous algorithms will be described on a round-by-round basis
for each processor. For each round we will specify what messages are to be sent
by the processor and what actions it is to take based on the messages just received.
(Note that the messages to be sent in the first round are those that are initially in the
outbuf variables.) The local computation done within a round will be described in a
style consistent with typical pseudocode for sequential algorithms. Termination will
be implicitly indicated when no more rounds are specified.

In the pseudocode, the local state variables of processor p; will not be subscripted
with 7; in discussion and proof, subscripts will be added when necessary to avoid
ambiguity.

Comments will begin with //.

In the next sections we will give several examples of describing algorithms in
prose, in pseudocode, and as state transitions.

2.2 BROADCAST AND CONVERGECAST ON A SPANNING TREE

We now present several examples to help the reader gain a better understanding of the
model, pseudocode, correctness arguments, and complexity measures for distributed
algorithms. These algorithms solve basic tasks of collecting and dispersing informa-
tion and computing spanning trees for the underlying communication network. They
serve as important building blocks in many other algorithms.

Broadcast

We start with a simple algorithm for the (single message) broadcast problem, as-
suming a spanning tree of the network is given. A distinguished processor, p., has
some information, namely, a message (M), it wishes to send to all other processors.
Coptes of the message are to be sent along a tree that is rooted at p. and spans
all the processors in the network. The spanning tree rooted at p, is maintained in
a distributed fashion: Each processor has a distinguished channel that leads to its
parent in the tree as well as a set of channels that lead to its children in the tree.

Here is the prose description of the algorithm. Figure 2.2 shows a sample asyn-
chronous execution of the algorithm; solid lines depict channels in the spanning tree,
dashed lines depict channels not in the spanning tree, and shaded nodes indicate
processors that have received (M) already. The root, p,, sends the message (M) on all
the channels leading to its children (see Fig. 2.2(a)). When a processor receives the
message (M) on the channel from its parent, it sends (M) on all the channels leading
to its children (see Fig. 2.2(b)).

The pseudocode for this algorithm is in Algorithm 1; there is no pseudocode for
a computation step in which no messages are received and no state change is made.

Finally, we describe the algorithm at the level of state transitions: The state of
each processor p; contains:

¢ A variable parent;, which holds either a processor index or nil

16 BASIC ALGORITHMS IN MESSAGE-PASSING SYSTEMS

Fig. 2.2 Two steps in an execution of the broadcast algorithm.

¢ A variable children;, which holds a set of processor indices
¢ A Boolean terminated;, which indicates whether p; is in a terminated state

Initially, the values of the parent and children variables are such that they form a
spanning tree rooted at p, of the topology graph. Initially, all terminated variables
are false. Initially, outbuf.[j] holds (M) for each j in children,;* all other outbuf
variables are empty. The result of comp(i) is that, if (M) is in an inbuf; [k] for some
k, then (M) is placed in outbuf;[j], for each j in children;, and p; enters a terminated
state by setting terminated; to true. If i = r and terminated, is false, then terminated,
is set to true. Otherwise, nothing is done.

Note that this algorithm is correct whether the system is synchronous or asyn-
chronous. Furthermore, as we discuss now, the message and time complexities of the
algorithm are the same in both models.

What is the message complexity of the algorithm? Clearly, the message (M) is
sent exactly once on each channel that belongs to the spanning tree (from the parent to
the child) in both the synchronous and asynchronous cases. That is, the total number
of messages sent during the algorithm is exactly the number of edges in the spanning
tree rooted at p,.. Recall that a spanning tree of n nodes has exactly n — 1 edges;
therefore, exactly n — 1 messages are sent during the algorithm.

Let us now analyze the time complexity of the algorithm. It is easier to perform
this analysis when communication is synchronous and time is measured in rounds.

The following lemma shows that by the end of round ¢, the message (M) reaches
all processors at distance ¢ (or less) from p, in the spanning tree. This is a simple
claim, with a simple proof, but we present it in detail to help the reader gain facility
with the model and proofs about distributed algorithms. Later in the book we will
leave such simple proofs to the reader.

2Here we are using the convention that inbuf and outbuf variables are indexed by the neighbors’ indices
instead of by channel labels.

BROADCAST AND CONVERGECAST ON A SPANNING TREE 17

Algorithm 1 Spanning tree broadcast algorithm.

Initially (M) is in transit from p, to all its children in the spanning tree.

Code for p,:
l: upon receiving no message: /1 first computation event by p.,
2: terminate

Codeforp;,, 0 <i<n—1,i#r
3: upon receiving (M) from parent:
4: send (M) to all children

5: terminate

Lemma 2.1 In every admissible execution of the broadcast algorithm in the syn-
chronous model, every processor at distance t from p, in the spanning tree receives
the message (M) in round t.

Proof. The proof proceeds by induction on the distance ¢ of a processor from p,..

Thebasisis¢ = 1. From the description of the algorithm, each child of p, receives
(M) from p, in the first round.

We now assume that every processor at distance t — 1 > 1 from p,. in the spanning
tree receives the message (M) in round ¢ — 1.

We must show that every processor p; at distance ¢ from p, in the spanning tree
receives (M) in round ¢. Let p; be the parent of p; in the spanning tree. Since p; is at
distance ¢ — 1 from p,, by the inductive hypothesis, p; receives (M) inround ¢ — 1.
By the description of the algorithm, p; then sends (M) to p; in the nextround. [

By Lemma 2.1, the time complexity of the algorithm is d, where d is the depth of
the spanning tree. Recall that d is at most n — 1, when the spanning tree is a chain.
Thus we have:

Theorem 2.2 There is a synchronous broadcast algorithm with message complexity
n — 1 and time complexity d, when a rooted spanning tree with depth d is known in
advance.

A similar analysis applies when communication is asynchronous. Once again,
the key is to prove that by time ¢, the message (M) reaches all processors at distance
t (or less) from p,. in the spanning tree. This implies that the time complexity of
the algorithm is also d when communication is asynchronous. We now analyze this
situation more carefully.

Lemma 2.3 In every admissible execution of the broadcast algorithm in an asyn-
chronous system, every processor at distance t from p, in the spanning tree receives
message (M) by timet.

Proof. The proof is by induction on the distance ¢ of a processor from p;..

18 BASIC ALGORITHMS IN MESSAGE-PASSING SYSTEMS

The basis is ¢ = 1. From the description of the algorithm, (M) is initially in transit
to each processor p; at distance 1 from p,. By the definition of time complexity for
the asynchronous model, p; receives (M) by time 1.

We must show that every processor p; at distance ¢ from p, in the spanning tree
receives (M) in round ¢. Let p; be the parent of p; in the spanning tree. Since p; is
at distance t — 1 from p,., by the inductive hypothesis, p; receives (M) by time ¢ — 1.
By the description of the algorithm, p; sends (M) to p; when it receives (M), that is,
by time ¢ — 1. By the definition of time complexity for the asynchronous model, p;
receives (M) by time ¢. t

Thus we have:

Theorem 2.4 There is an asynchronous broadcast algorithm with message complex-
ity n — 1 and time complexity d, when a rooted spanning tree with depth d is known
in advance.

Convergecast

The broadcast problem requires one-way communication, from the root, p,, to all the
nodes of the tree. Consider now the complementary problem, called convergecast,
of collecting information from the nodes of the tree to the root. For simplicity, we
consider a specific variant of the problem in which each processor p; starts with
a value z; and we wish to forward the maximum value among these values to the
root p,. (Exercise 2.3 concerns a general convergecast algorithm that collects all the
information in the network.)

Once again, we assume that a spanning tree is maintained in a distributed fashion,
as in the broadcast problem. Whereas the broadcast algorithm is initiated by the root,
the convergecast algorithm is initiated by the leaves. Note that a leaf of the spanning
tree can be easily distinguished, because it has no children.

Conceptually, the algorithm is recursive and requires each processor to compute
the maximum value in the subtree rooted at it. Starting at the leaves, each processor
p; computes the maximum value in the subtree rooted at it, which we denote by v;,
and sends v; to its parent. The parent collects these values from all its children,
computes the maximum value in its subtree, and sends the maximum value to its
parent.

In more detail, the algorithm proceeds as follows. If a node p; is a leaf, then it
starts the algorithm by sending its value z; to its parent (see Fig. 2.3(a)). A non-leaf
node, p;, with k children, waits to receive messages containing v;,, . .., v;, from its
children p;,, ..., ps,. Then it computes v; = max{z;, vi,,...,v;, } and sends v; to
its parent. (See Figure 2.3(b).)

The analyses of the message and time complexities of the convergecast algorithm
are very much like those of the broadcast algorithm. (Exercise 2.2 indicates how to
analyze the time complexity of the convergecast algorithm.)

FLOODING AND BUILDING A SPANNING TREE 19

T2

(a)

Fig. 2.3 Two steps in an execution of the convergecast algorithm.

Theorem 2.5 There is an asynchronous convergecast algorithm with message com-
plexity n — 1 and time complexity d, when a rooted spanning tree with depth d is
known in advance.

It is sometimes useful to combine the broadcast and convergecast algorithms.
For instance, the root initiates a request for some information, which is distributed
with the broadcast, and then the responses are funneled back to the root with the
convergecast.

2.3 FLOODING AND BUILDING A SPANNING TREE

The broadcast and convergecast algorithms presented in Section 2.2 assumed the
existence of a spanning tree for the communication network, rooted at a particular
processor. Let us now consider the slightly more complicated problem of broadcast
without a preexisting spanning tree, starting from a distinguished processor p,.. First
we consider an asynchronous system.

The algorithm, called flooding, starts from p,., which sends the message (M) to all
its neighbors, that is, on all its communication channels. When processor p; receives
(M) for the first time, from some neighboring processor p;, it sends (M) to all its
neighbors except p; (see Figure 2.4).

Clearly, a processor will not send (M) more than once on any communication
channel. Thus (M) is sent at most twice on each communication channel (once
by each processor using this channel); note that there are executions in which the
message (M) is sent twice on all communication channels, except those on which (M)
is received for the first time (see Exercise 2.6). Thus it is possible that 2rm — (n — 1)
messages are sent, where m is the number of communication channels in the system,
which can be as high as ﬂ"2_—1_2

We will discuss the time complexity of the flooding algorithm shortly.

20 BASIC ALGORITHMS IN MESSAGE-PASSING SYSTEMS

(b)

Fig. 2.4 Two steps in an execution of the flooding algorithm; solid lines indicate channels
that are in the spanning tree at this point in the execution.

Effectively, the flooding algorithm induces a spanning tree, with the root at p;,
and the parent of a processor p; being the processor from which p; received (M) for
the first time. Itis possible that p; received (M) concurrently from several processors,
because a comp event processes all messages that have been delivered since the last
comp event by that processor; in this case, p;’s parent is chosen arbitrarily among
them.

The flooding algorithm can be modified to explicitly construct this spanning tree,
as follows: First, p, sends (M) to all its neighbors. As mentioned above, it is possible
that a processor p; receives (M) for the first time from several processors. When
this happens, p; picks one of the neighboring processors that sent (M) to it, say, p;,
denotes it as its parent and sends a (parent) message to it. To all other processors,
and to any other processor from which (M) is received later on, p; sends an (already)
message, indicating that p; is already in the tree. After sending (M) to all its other
neighbors (from which (M) was not previously received), p; waits for a response
from each of them, either a (parent) message or an (already) message. Those who
respond with (parent) messages are denoted as p;’s children. Once all recipients of
pi’s (M) message have responded, either with (parent) or (already), p; terminates
(see Figure 2.5).

The pseudocode for the modified flooding algorithm is in Algorithm 2.

Lemma 2.6 In every admissible execution in the asynchronous model, Algorithm 2
constructs a spanning tree of the network rooted at p,.

Proof. Inspecting the code reveals two important facts about the algorithm. First,
once a processor Sets its parent variable, it is never changed (and it has only one
parent). Second, the set of children of a processor never decreases. Thus, eventually,
the graph structure induced by parent and children variables is static, and the parent
and children variables at different nodes are consistent, that is, if p; is a child of
pi, then p; is p;’s parent. We show that the resulting graph, call it (7, is a directed
spanning tree rooted at p,..

FLOODING AND BUILDING A SPANNING TREE 21

Fig. 2.5 Two steps in the construction of the spanning tree.

Why is every node reachable from the root? Suppose in contradiction some node
is not reachable from p, in (G. Since the network is connected, there exist two
processors, p; and p;, with a channel between them such that p; is reachable from
pr in G but p; is not. Exercise 2.4 asks you to verify that a processor is reachable
from p, in GG if and only if it ever sets its parent variable, Thus p;’s parent variable
remains nil throughout the execution, and p; sets its parent variable at some point.
Thus p; sends (M) to p; in Line 9. Since the execution is admissible, the message is
eventually received by p;, causing p; to set its parent variable. This is a contradiction.

Why is there no cycle? Suppose in contradiction there is a cycle, say, pi,, pi,, - - -,
iy, Pi,- Note that if p; is a child of p;, then p; receives (M) for the first time after p;
does. Since each processor is the parent of the next processor in the cycle, that would

mean that p;, receives (M) for the first time before p;, (itself) does, a contradiction.
U

Clearly, the modification to construct a spanning tree increases the message com-
plexity of the flooding algorithm only by a constant multiplicative factor.

In the asynchronous model of communication, it is simple to see that by time ¢, the
message (M) reaches all processors that are at distance ¢ (or less) from p,.. Therefore:

Theorem 2.7 Thereisanasynchronous algorithmto find a spanning tree of a network
with m edges and diameter D), given a distinguished node, with message complexity
O(mn) and time complexity O (D).

The modified flooding algorithm works, unchanged, in the synchronous case. Its
analysis is similar to that for the asynchronous case. However, in the synchronous
case, unlike the asynchronous, the spanning tree constructed is guaranteed to be a
breadth-first search (BFS) tree:

Lemma 2.8 In every admissible execution in the synchronous model, Algorithm 2
constructs a BFS tree of the network rooted at p,.

22 BASIC ALGORITHMS IN MESSAGE-PASSING SYSTEMS

Algorithm 2 Modified flooding algorithm to construct a spanning tree:
code for processor p;, 0 < i< n— 1.

Initially parent = L, children = , and other = 0.

upon receiving no message:
if p; = p, and parent = L then // root has not yet sent (M)
send (M) to all neighbors
parent = p;

bl >

upon receiving (M) from neighbor p;:
if parent = 1 then /1 p; has not received (M) before
parent := p;
send (parent) to p;
send (M) to all neighbors except p;
0: else send (already) to p;

S oW

11: upon receiving (parent) from neighbor p;:

12: add p; to children

13: if children U other contains all neighbors except parent then
14: terminate

15: upon receiving (already) from neighbor p;:

16: add p; to other

17: if children U other contains all neighbors except parent then
18: terminate

Proof. We show by induction on ¢ that at the beginning of round ¢, (1) the graph
constructed so far according to the parent variables is a BFS tree consisting of all
nodes at distance at most ¢ — 1 from p,, and (2) (M) messages are in transit only from
nodes at distance exactly ¢ — 1 from p,.

The basis is ¢ = 1. Initially, all parent variables are nil, and (M) messages are
outgoing from p, and no other node.

Suppose the claim is true forround ¢ — 1 > 1. During round ¢ — 1, the (M)
messages in transit from nodes at distance t — 2 are received. Any node that receives
(M) is at distance ¢ — 1 or less from p,. A recipient node with a non-nil parent
variable, namely, a node at distance ¢ — 2 or less from p,., does not change its parent
variable or send out an (M) message. Every node at distance ¢t — 1 from p, receives
an (M) message in round ¢ — 1 and, because its parent variable is nil, it sets it to an
appropriate parent and sends out an (M) message. Nodes not at distance ¢ — 1 do not
receive an (M) message and thus do not send any. d

Therefore;:

CONSTRUCTING A DEPTH-FIRST SEARCH SPANNING TREE FOR A SPECIFIED ROOT 23

Fig. 2.6 A non-BFS tree.

Theorem 2.9 There is a synchronous algorithm to find a BFS tree of a network with
m edges and diameter D, given a distinguished node, withmessage complexity O(m)
and time complexity O(D).

In an asynchronous system, it is possible that the modified flooding algorithm
does not construct a BFs tree. Consider a fully connected network with five nodes, pg
through py4, in which py is the root (see Fig. 2.6). Suppose the (M) messages quickly
propagate in the order pg to p;, p1 to pz, pa to ps, and ps to p4, while the other (M)
messages are very slow. The resulting spanning tree is the chain py through p4, which
is not a BFS tree. Furthermore, the spanning tree has depth 4, although the diameter
is only 1. Note that the running time of the algorithm is proportional to the diameter,
not the number of nodes. Exercise 2.5 asks you to generalize these observations for
graphs with n nodes.

The modified flooding algorithm can be combined with the convergecast algorithm
described above, to request and collect information. The combined algorithm works
in either synchronous or asynchronous systems. However, the time complexity of
the combined algorithm is different in the two models; because we do not necessarily
get a BFS tree in the asynchronous model, it is possible that the convergecast will
be applied on a tree with depth n — 1. However, in the synchronous case, the
convergecast will always be applied on a tree whose depth is at most the diameter of
the network.

2.4 CONSTRUCTING A DEPTH-FIRST SEARCH SPANNING TREE FOR
A SPECIFIED ROOT

Another basic algorithm constructs a depth-first search (DFs) tree of the communi-
cation network, rooted at a particular node. A DFS tree is constructed by adding one
node at a time, more gradually than the spanning tree constructed by Algorithm 2,
which attempts to add all the nodes at the same level of the tree concurrently.

The pseudocode for depth-first search is in Algorithm 3.

24

BASIC ALGORITHMS IN MESSAGE-PASSING SYSTEMS

Algorithm 3 Depth-first search spanning tree algorithm for a specified root:
code for processor p;, 0 < i< n—1.

Initially parent = L, children = 0, unexplored = all neighbors of p;

halh o

A 4

10:
11:
12:
13:
14
15:

16:
17:
18:

19:
20:
21:
22:
23:
24
25:
26:

upon receiving no message:
if p; = pr and parent = 1 then
parent .= p;
explore()

upon receiving (M) from p;:
if parent = 1 then
parent 1= p;
remove p; from unexplored
explore()
else
send (already) to p,
remove p; from unexplored
upon receiving (already) from p;:
explore()

upon receiving (parent) from p;:
add p; to children
explore()

procedure explore():
if unexplored # (then

let pr be a processor in unexplored
remove pi from unexplored

send (M) to pi
else

// root wakes up

// p; has not received (M) before

// already in tree

if parent # p; then send (parent) to parent

terminate

/I DFs subtree rooted at p; has been built

The correctness of Algorithm 3 essentially follows from the correctness of the
sequential DFs algorithm, because there is no concurrency in the execution of this
algorithm. A careful proof of the next lemma is left as an exercise.

Lemma 2.10 /n every admissible execution in the asynchronous model, Algorithm 3

constructs a DFS tree of the network rooted at p,.

To calculate the message complexity of the algorithm, note that each processor
sends (M) at most once on each of its adjacent edges; also, each processor generates
at most one message (either (already) or (parent)) in response to receiving (M) on
each of its adjacent edges. Therefore, at most 4m messages are sent by Algorithm 3.

CONSTRUCTING A DEPTH-FIRST SEARCH SPANNING TREE WITHOUT A SPECIFIED ROOT 25

Showing that the time complexity of the algorithm is O(n) is left as an exercise for
the reader. We summarize:

Theorem 2.11 There is an asynchronous algorithm to find a depth-first search span-
ning tree of a network with m edges and n nodes, given a distinguished node, with
message complexity O(m) and time complexity O(m).

2.5 CONSTRUCTING A DEPTH-FIRST SEARCH SPANNING TREE
WITHOUT A SPECIFIED ROOT

Algorithm 2 and Algorithm 3 build a spanning tree for the communication network,
with reasonable message and time complexities. However, both of them require the
existence of a distinguished node, from which the construction starts. In this section,
we discuss how to build a spanning tree when there is no distinguished node. We
assume, however, that the nodes have unique identifiers, which are natural numbers;
as we shall see in Section 3.2, this assumption is necessaty.

To build a spanning tree, each processor that wakes up spontaneously attempts to
build a DFs tree with itself as the root, using a separate copy of Algorithm 3. If two
DFS trees try to connect to the same node (not necessarily at the same time), the node
will join the DFS tree whose root has the higher identifier.

The pseudocode appears in Algorithm 4. To implement the above idea, each node
keeps the maximal identifier it has seen so far in a variable leader, which is initialized
to a value smaller than any identifier.

When a node wakes up spontaneously, it sets its leader to its own identifier and
sends a DFS message carrying its identifier. When a node receives a DFs message
with identifier y, it compares y and leader. If y > leader, then this might be the DFS
of the processor with maximal identifier; in this case, the node changes leader to be
Yy, sets its parent variable to be the node from which this message was received, and
continues the DFS with identifier y. If y = leader, then the node already belongs to
this spanning tree. If y < leader, then this DFs belongs to a node whose identifier is
smaller than the maximal identifier seen so far; in this case, no message is sent, which
stalls the DFs tree construction with identifier y. Eventually, a DF'S message carrying
the identifier leader (or a larger identifier) will arrive at the node with identifier y,
and connect it to its tree.

Only the root of the spanning tree constructed explicitly terminates; other nodes
do not terminate and keep waiting for messages. It is possible to modify the algorithm
so that the root sends a termination message using Algorithm 1.

Proving correctness of the algorithm is more involved than previous algorithms in
this chapter; we only outline the arguments here. Consider the nodes that wake up
spontaneously, and let p,, be the node with the maximal identifier among them; let
m be p,,’s identifier.

First observe that (leader) messages with leader id mn are never dropped because
of discovering a larger leader id, by definition of .

26 BASIC ALGORITHMS IN MESSAGE-PASSING SYSTEMS

Algorithm 4 Spanning tree construction: code for processor p;, 0 <z < n — 1.

Initially parent = 1, leader = —1, children = B, unexplored = all neighbors of p;

l: upon receiving no message:

2: if parent = L then /I wake up spontaneously
3: leader .= id

4: parent 1= p;

5 explore()

6: uponreceiving (leader,new-id) from p;:

7 if leader < new-id then // switch to new tree
8: leader := new-id

9: parent 1= p;

10: children .= ()

11: unexplored := all neighbors of p; except p;

12: explore()

13: else if leader = new-id then

14: send (already,leader) to p; // already in same tree

/1 otherwise, leader > new-id and the DFS for new-id is stalled

15: upon receiving (already,new-id) from p;:
16: if new-id = leader then explore()

17: upon receiving (parent new-id) from p;:

18: if new-id = leader then /] otherwise ignore message
19: add p; to children
20: explore()

21: procedure explore():
22: if unexplored #) then

23: let px, be a processor in unexplored

24: remove py from unexplored

25: send (leader,leader) to py

26: else

27: if parent # p; then send (parent,leader) to parent
28: else terminate as root of spanning tree

Second, (already) messages with leader id rn are never dropped because they have
the wrong leader id. Why? Suppose p; receives an (already) message from p; with
leader id m. The reason p; sent this message to p; is that it received a (leader)
message from p; with leader id rn. Once p; sets its leader id to m, it never resets it,
because m is the largest leader id in the system. Thus when p; receives p;’s (already)

CONSTRUCTING A DEPTH-FIRST SEARCH SPANNING TREE WITHOUT A SPECIFIED ROOT 27

message with leader id m, p; still has its leader id as rn, the message is accepted, and
the exploration proceeds.

Third, {parent) messages with leader id rn are never dropped because they have
the wrong leader id. The argument is the same as for (already) messages.

Finally, messages with leader id mn are never dropped because the recipient has
terminated. Suppose in contradiction that some p; has terminated before receiving
a message with leader id m. Then p; thinks it is the leader, but its id, say z, is less
than m. The copy of Algorithm 3 with leader id ¢ must have reached every node in
the graph, including p,,. But p,, would not have responded to the leader message,
so this copy of Algorithm 3 could not have completed, a contradiction.

Thus the copy of Algorithm 3 for leader id rn completes, and correctness of
Algorithm 3 implies correctness of Algorithm 4.

A simple analysis of the algorithm uses the fact that, in the worst case, each proces-
sor tries to construct a DFS tree. Therefore, the message complexity of Algorithm 4
is at most n times the message complexity of Algorithm 3, that is, O(nm). The time
complexity is similar to the time complexity of Algorithm 3, that is, O(m).

Theorem 2.12 Algorithm 4 finds a spanning tree of a network with m edges and n
nodes, with message complexity O(n - m) and time complexity O(m).

Exercises

2.1 Code one of the simple algorithms in state transitions.

2.2 Analyze the time complexity of the convergecast algorithm of Section 2.2
when communication is synchronous and when communication is asyn-
chronous.

Hint: For the synchronous case, prove that during round ¢ + 1, a processor at
height £ sends a message to its parent. For the asynchronous case, prove that
by time ¢, a processor at height 1 has sent a message to its parent.

2.3 Generalize the convergecast algorithm of Section 2.2 to collect all the infor-
mation. That is, when the algorithm terminates, the root should have the input
values of all the processors. Analyze the bit complexity, that is, the total
number of bits that are sent over the communication channels.

2.4 Prove the claim used in the proof of Lemma 2.6 that a processor is reachable
from p, in GG if and only if it ever sets its parent variable.

2.5 Describe an execution of the modified flooding algorithm (Algorithm 2) in an
asynchronous system with n nodes that does not construct a BFS tree.

2.6 Describe an execution of Algorithm 2 in some asynchronous system, where
the message is sent twice on communication channels that do not connect a
parent and its children in the spanning tree.

28 BASIC ALGORITHMS IN MESSAGE-PASSING SYSTEMS

2.7 Perform a precise analysis of the time complexity of the modified flooding
algorithm (Algorithm 2), for the synchronous and the asynchronous models.

2.8 Explain how to eliminate the (already) messages from the modified flooding
algorithm (Algorithm 2) in the synchronous case and still have a correct
algorithm. What is the message complexity of the resulting algorithm?

2.9 Do the broadcast and convergecast algorithms rely on knowledge of the num-
ber of nodes in the system?

2.10 Modity Algorithm 3 so that it handles correctly the case where the distin-
guished node has no neighbors.

2.11 Modify Algorithm 3 so that all nodes terminate.
2.12 Prove that Algorithm 3 constructs a DFS tree of the network rooted at p,..
2.13 Prove that the time complexity of Algorithm 3 is O(m).

2.14 Modify Algorithm 3 so it constructs a DFS numbering of the nodes, indicating
the order in which the message (M) arrives at the nodes.

2.15 Modify Algorithm 3 to obtain an algorithm that constructs a DFS tree with
O(n) time complexity.

Hint: When a node receives the message (M) for the first time, it notifies all
its neighbors but passes the message only to one of them.

2.16 Prove Theorem 2.12.

2.17 Show that in Algorithm 4 if the leader variable is not included in the {parent)
message and the test in Line 18 is not performed, then the algorithm is
incorrect.

Chapter Notes

The first part of this chapter introduced our formal model of a distributed message-
passing system; this model is closely based on that used by Attiya, Dwork, Lynch,
and Stockmeyer [27], although many papers in the literature on distributed algorithms
have used similar models.

Modeling each processor in a distributed algorithm as a state machine is an idea
that goes back at least to Lynch and Fischer [176]. Two early papers that explicitly
represent an execution of a distributed system as a sequence of state transitions are
by Owicki and Lamport [204] and by Lynch and Fischer [176]. The same idea is,
more implicitly, present in the paper by Owicki and Gries [203].

A number of researchers (e.g., Fischer, Lynch, and Paterson [110]) have used the
term “admissible” to distinguish those executions that satisfy additional constraints
from all executions: That is, the term “execution” refers to sequences that satisfy

