Leader Election in Rings

In this chapter, we consider systems in which the topology of the message passing
system is a ring. Rings are a convenient structure for message-passing systems
and correspond to physical communication systems, for example, token rings. We
investigate the leader election problem, in which a group of processors must choose
one among them to be the leader. The existence of a leader can simplify coordination
among processors and is helpful in achieving fault tolerance and saving resources—
recall how the existence of the special processor p, made possible a simple solution
to the broadcast problem in Chapter 2. Furthermore, the leader election problem
represents a general class of symmetry-breaking problems. For example, when a
deadlock is created, because of processors waiting in a cycle for each other, the
deadlock can be broken by electing one of the processors as a leader and removing it
from the cycle.

3.1 THE LEADER ELECTION PROBLEM

The leader election problem has several variants, and we define the most general
one below. Informally, the problem is for each processor eventually to decide that
either it is the leader or it is not the leader, subject to the constraint that exactly one
processor decides that it is the leader. In terms of our formal model, an algorithm is
said to solve the leader election problem if it satisfies the following conditions:

o The terminated states are partitioned into elected and not-elected states. Once
a processor enters an elected (respectively, not-elected) state, its transition

31

32 LEADER ELECTION IN RINGS

Lo

P2 Yt

Fig. 3.1 A simple oriented ring.

function will only move it to another (or the same) elected (respectively, not-
elected) state.

¢ In every admissible execution, exactly one processor (the leader) enters an
elected state and all the remaining processors enter a not-elected state.

We restrict our attention to the situation in which the topology of the system is a
ring. In particular, we assume that the edges in the topology graph go between p;
and p; 41, for all ¢, 0 < ¢ < n, where addition is mod n. Furthermore, we assume
that processors have a consistent notion of left and right, resulting in an oriented
ring. Formally, this assumption is modeled by requiring that, for every i, 0 < 7 < n,
pi’s channel to p;4; is labeled 1, also known as left or clockwise, and p;’s channel
to p;_ is labeled 2, also known as right or counterclockwise (as usual, addition and
subtraction are mod n). Figure 3.1 contains a simple example of a three-node ring.
(See the chapter notes for more on orientation.)

3.2 ANONYMOUS RINGS

A leader election algorithm for a ring system is anonymous if processors do not have
unique identifiers that can be used by the algorithm. More formally, every processor
in the system has the same state machine. In describing anonymous algorithms,
recipients of messages can be specified only in terms of channel labels, for example,
left and right neighbors.

A potentially useful piece of information for an algorithm is n, the number of
processors, If n is not known to the algorithm, that is, » is not hardcoded in advance,
the algorithm is said to be “uniform,” because the algorithm looks the same for every
value of n. Formally, in an anonymous uniform algorithm, there is only one state
machine for all processors, no matter what the ring size. In an anonymous nonuniform
algorithm, for each value of n, the ring size, there is a single state machine, but there
can be different state machines for different ring sizes, that is, n can be explicitly
present in the code.

We show that there is no anonymous leader election algorithm for ring systems.

ANONYMOUS RINGS 33

For generality and simplicity, we prove the result for nonuniform algorithms and
synchronous rings. Impossibility for synchronous rings immediately implies the
same result for asynchronous rings (see Exercise 3.1). Similarly, impossibility for
nonuniform algorithms, that is, algorithms in which n, the number of processors, is
known, implies impossibility for algorithms when n is unknown (see Exercise 3.2).

Recall that in a synchronous system, an algorithm proceeds in rounds, where in
each round all pending messages are delivered, following which every processor takes
one computation step. The initial state of a processor includes in the outbuf variables
any messages that are to be delivered to the processot’s right and left neighbors in
the first round.

The idea behind the impossibility result is that in an anonymous ring, the symmetry
between the processors can always be maintained; that is, without some initial
asymmetry, such as provided by unique identifiers, symmetry cannot be broken.
Specifically, all processors in the anonymous ring algorithm start in the same state.
Because they are identical and execute the same program (i.e., they have the same state
machine), in every round each of them sends exactly the same messages; thus they all
receive the same messages in each round and change state identically. Consequently,
if one of the processors is elected, then so are all the processors. Hence, it is
impossible to have an algorithm that elects a single leader in the ring.

To formalize this intuition, consider a ring K of size n > 1 and assume, by way of
contradiction, that there exists an anonymous algorithm, A, for electing a leader in
this ring. Because the ring is synchronous and there is only one initial configuration,
there is a unique admissible execution of A on R.

Lemma 3.1 For every round k of the admissible execution of A in R, the states of
all the processors at the end of round k are the same.

Proof. The proofisby inductionon £. The base case, & = 0 (before the first round),
is straightforward because the processors begin in the same initial state.

For the inductive step, assume the lemma holds for round & — 1. Because the
processors are in the same state in round £ — 1, they all send the same message m, to
the right and the same message m; to the left. In round %, every processor receives
the message m, on its right edge and the message m, on its left edge. Thus all
processors receive exactly the same messages in round &; because they execute the
same program, they are in the same state at the end of round . I

The above lemma implies that if at the end of some round some processor an-
nounces itself as a leader, by entering an elected state, so do all other processors.
This contradicts the assumption that A is a leader election algorithm and proves:

Theorem 3.2 There is no nonuniform anonymous algorithm for leader election in
synchronous rings.

34 LEADER ELECTION IN RINGS

3.3 ASYNCHRONOUS RINGS

This section presents upper and lower bounds on the message complexity for the
leader election problem in asynchronous rings. Because Theorem 3.2 just showed
that there is no anonymous leader election algorithm for rings, we assume in the
remainder of this chapter that processors have unique identifiers.

We assume that each processor in a ring has a unique identifier. Every natural
number is a possible identifier. When a state machine (local program) is associated
with each processor p;, there is a distinguished state component id; that is initialized
to the value of that identifier.

We will specify a ring by listing the processors’ identifiers in clockwise order,
beginning with the smallest identifier. Thus each processor p;, 0 < 7 < n, is
assigned an identifier id;. Note that two identifier assignments, one of which is a
cyclic shift of the other, result in the same ring by this definition, because the indices
of the underlying processors (e.g., the 97 of processor po7) are not available.

The notions of uniform and nonuniform algorithms are slightly different when
unique identifiers are available.

A (non-anonymous) algorithm is said to be uniform if, for every identifier, there is
a state machine and, regardless of the size of the ring, the algorithm is correct when
processors are assigned the unique state machine for their identifier. That is, there is
only one local program for a processor with a given identifier, no matter what size
ring the processor is a part of.

A (non-anonymous) algorithm is said to be nonuniform if, for every n and every
identifier, there is a state machine. For every n, given any ring of size n, the algorithm
in which every processor has the state machine for its identifier and for ring size n
must be correct.

We start with a very simple leader election algorithm for asynchronous rings that
requires O(n?) messages. This algorithm motivates a more efficient algorithm that
requires O(nlogn) messages. We show that this algorithm has optimal message
complexity by proving a lower bound of 2(nlogn) on the number of messages
required for electing a leader.

3.3.1 An O(n?) Algorithm

Inthis algorithm, each processor sends a message with its identifier to its left neighbor
and then waits for messages from its right neighbor. When it receives such a message,
itchecks the identifier in this message. Iftheidentifier is greater than its own identifier,
it forwards the message to the left; otherwise, it “swallows” the message and does
not forward it. If a processor receives a message with its own identifier, it declares
itself a leader by sending a termination message to its left neighbor and terminating
as a leader. A processor that receives a termination message forwards it to the left
and terminates as a non-leader. Note that the algorithm does not depend on the size
of the ring, that is, it is uniform.

ASYNCHRONOUS RINGS 35

Fig. 3.2 Ring with ©(n?) messages.

Note that, in any admissible execution, only the message of the processor with
the maximal identifier is never swallowed. Therefore, only the processor with the
maximal identifier receives a message with its own identifier and will declare itself
as a leader. All the other processors receive termination messages and are not chosen
as leaders. This implies the correctness of the algorithm.

Clearly, the algorithm never sends more than O(n?) messages in any admissi-
ble execution. Moreover, there is an admissible execution in which the algorithm
sends @(n?) messages: Consider the ring where the identifiers of the processors are
0,...,n — 1 and they are ordered as in Figure 3.2. In this configuration, the message
of processor with identifier ¢ is sent exactly ¢ + 1 times. Thus the total number of
messages, including the n termination messages, is n + 31 (i + 1) = O(n?).

3.3.2 An O(nlogn) Algorithm

A more efficient algorithm is based on the same idea as the algorithm we have
just seen. Again, a processor sends its identifier around the ring and the algorithm
guarantees that only the message of the processor with the maximal identifier traverses
the whole ring and returns. However, the algorithm employs a more clever method
for forwarding identifiers, thus reducing the worst-case number of messages from
0O(n?) to O(nlogn).

To describe the algorithm, we first define the k-neighborhood of a processor p;
in the ring to be the set of processors that are at distance at most & from p; in the
ring (either to the left or to the right). Note that the k-neighborhood of a processor
includes exactly 2k + 1 processors.

The algorithm operates in phases; it is convenient to start numbering the phases
with 0. In the kth phase a processor tries to become a winner for that phase; to be a
winner, it must have the largest id in its 2%-neighborhood. Only processors that are
winners in the kth phase continue to compete in the (k + 1)-st phase. Thus fewer
processors proceed to higher phases, until at the end, only one processor is a winner
and it is elected as the leader of the whole ring.

36 LEADER ELECTION IN RINGS

In more detail, in phase 0, each processor attempts to become a phase 0 winner
and sends a (probe) message containing its identifier to its 1-neighborhood, that is,
to each of its two neighbors. If the identifier of the neighbor receiving the probe is
greater than the identifier in the probe, it swallows the probe; otherwise, it sends back
a (reply) message. If a processor receives a reply from both its neighbors, then the
processor becomes a phase 0 winner and continues to phase 1.

In general, in phase &, a processor p; that is a phase & — 1 winner sends (probe)
messages with its identifier to its 2% -neighborhood (one in each direction). Each such
message traverses 2¥ processors one by one. A probe is swallowed by a processor if it
contains an identifier that is smaller than its own identifier. If the probe arrives at the
last processor in the neighborhood without being swallowed, then that last processor
sends back a (reply) message to p;. If p; receives replies from both directions,
it becomes a phase k£ winner, and it continues to phase & + 1. A processor that
receives its own (probe) message terminates the algorithm as the leader and sends a
termination message around the ring.

Note that in order to implement the algorithm, the last processor in a 2¥-neighborhood
must return a reply rather than forward a (probe) message. Thus we have three fields
in each (probe) message: the identifier, the phase number, and a hop counter. The
hop counter is initialized to 0, and is incremented by 1 whenever a processor forwards
the message. If a processor receives a phase k£ message with a hop counter 2%, then
it is the last processor in the 2*-neighborhood.

The pseudocode appears in Algorithm 5. Phase & for a processor corresponds
to the period between its sending of a (probe) message in line 4 or 15 with third
parameter & and its sending of a (probe) message in line 4 or 15 with third parameter
k + 1. The details of sending the termination message around the ring have been left
out in the code, and only the leader terminates.

The correctness of the algorithm follows in the same manner as in the simple
algorithm, because they have the same swallowing rules. It is clear that the probes
of the processor with the maximal identifier are never swallowed; therefore, this
processor will terminate the algorithm as a leader. On the other hand, it is also
clear that no other (probe) can traverse the whole ring without being swallowed.
Therefore, the processor with the maximal identifier is the only leader elected by the
algorithm.

To analyze the worst-case number of messages that is sent during any admissible
execution of the algorithm, we first note that the probe distance in phase & is 2%, and
thus the number of messages sent on behalf of a particular competing processor in
phase k is 4 - 2%. How many processors compete in phase &, in the worst case? For
k = 0, the number is n, because all processors could begin the algorithm. For £ > 1,
every processor that is a phase £ — 1 winner competes in phase £. The next lemma
gives an upper bound on the number of winners in each phase.

Lemma 3.3 For every k > 1, the number of processors that are phase k winners is

at most g—k"'ﬁ

Proof. If a processor p; is a phase k winner, then every processor in p;’s 2k.
neighborhood must have an id smaller than p;’s id. The closest together that two

ASYNCHRONOUS RINGS 37

Algorithm 5 Asynchronous leader election: code for processor p;, 0 < i < n.

Initially, asleep = true

1: uponreceiving no message:

2 if asleep then

3: asleep := false

4 send (probe,id,0,1) to left and right

5: upon receiving (probe, j,k,d) from left (resp., right):

6 if 7 = id then terminate as the leader

7: if j > id and d < 2* then // forward the message
8: send (probe, j,k,d + 1) toright (resp., left) // increment hop counter
9 if j > idand d > 2* then /1 reply to the message
10: send (reply, j, k) to left (resp., right)

/1if § < id, message is swallowed

11: upon receiving {(reply, j,k) from left (resp., right):
12: if j # id then send {reply,j,k) to right (resp., left) // forward the reply

13: else // reply is for own probe
14: if already received (reply, j, k) from right (resp., left) then
15: send (probe,id,k + 1,1) /1 phase k winner

phase k winners, p; and p;, can be is if the left side of p;’s 2%-neighborhood is exactly

the right side of p;’s 2% _neighborhood. That is, there are 2° processors in between

pi and p;. The maximum number of phase & winners is achieved when this dense

packing continues around the ring. The number of winners in this case is E&T U

By the previous lemma, there is only one winner once the phase number is at least

log(n — 1). In the next phase, the winner elects itself as leader. The total number of

messages then, including the 4n phase 0 messages and n termination messages, is at
most:

flog(n—1)]+1
bn+ . 4.2
k=1

. ﬁ%ﬁ < 8n(logn + 2) + 5n

To conclude, we have the following theorem:

Theorem 3.4 There is an asynchronous leader election algorithm whose message
complexity is O(n log n).

Note that, in contrast to the simple algorithm of Section 3.3.1, this algorithm uses
bidirectional communication on the ring. The message complexity of this algorithm
is not optimal with regard to the constant factor, 8; the chapter notes discuss papers
that achieve smaller constant factors.

38 LEADER ELECTION IN RINGS

3.3.3 An(nlogn) Lower Bound

In this section, we show that the leader election algorithm of Section 3.3.2 is asymp-
totically optimal. That is, we show that any algorithm for electing a leader in an
asynchronous ring sends at least 2(n log n) messages. The lower bound we prove is
for uniform algorithms, namely, algorithms that do not know the size of the ring.

We prove the lower bound for a special variant of the leader election problem,
where the elected leader must be the processor with the maximum identifier in the
ring; in addition, all the processors must know the identifier of the elected leader.
That is, before terminating each processor writes to a special variable the identity of
the elected leader. The proof of the lower bound for the more general definition of
the leader election problem follows by reduction and is left as Exercise 3.5.

Assume we are given a uniform algorithm A that solves the above variant of the
leader election problem. We will show that there exists an admissible execution of
A in which Q(nlogn) messages are sent. Intuitively, this is done by building a
“wasteful” execution of the algorithm for rings of size /2, in which many messages
are sent. Then we “paste together” two different rings of size n/2 to form a ring of
size n, in such a way that we can combine the wasteful executions of the smaller
rings and force ©(n) additional messages to be received.

Although the preceding discussion referred to pasting together executions, we will
actually work with schedules. The reason is that executions include configurations,
which pin down the number of processors in the ring. We will want to apply the same
sequence of events to different rings, with different numbers of processors. Before
presenting the details of the lower bound proof, we first define schedules that can be
“pasted together.”

Definition 3.1 A schedule o of A for a particular ring is open if there exists an edge
e of the ring such that in o no message is delivered over the edge e in either direction,
e is an open edge of ¢.

Note that an open schedule need not be admissible; in particular, it can be finite,
and processors may not have terminated yet.

Intuitively, because the processors do not know the size of the ring, we can paste
together two open schedules of two small rings to form an open schedule of a larger
ring. Note that this argument relies on the fact that the algorithm is uniform and
works in the same manner for every ring size.

We now give the details. For clarity of presentation, we assume that n is an integral
power of 2 for the rest of the proof. (Exercise 3.6 asks you to prove the lower bound
for other values of n.)

Theorem 3.5 For every n and every set of n identifiers, there is a ring using those
identifiers that has an open schedule of A in which at least M (n) messages are
received, where M (2) = 1 and M (n) = 2M (%) + 5(3 — 1) forn > 2.

Since M (n) = ©(nlogn), this theorem implies the desired lower bound. The
proof of the theorem is by induction. Lemma 3.6 is the base case (n = 2!) and

ASYNCHRONQUS RINGS 39

Po 243
with z with y

Fig. 3.3 Illustration for Lemma 3.6.

Lemma 3.7 is the inductive step (n = 2°, i > 1). For the base case ring consisting of
two processors, we assume that there are actually two distinct links connecting the
Processors.

Lemma 3.6 For every set consisting of two identifiers, there is a ring R using those
two identifiers that has an open schedule of A in which at least one message is
received.

Proof. Assume R contains processors pg and p; and the identifier of py (say, x) is
larger than the identifier of p; (say, y) (see Fig. 3.3).

Let o be an admissible execution of A on the ring. Since A is correct, eventually
p1 must write py’s identifier z in «. Note that at least one message must be received
in «; otherwise, if p; does not get a message from py it cannot discover that the
identifier of py is z. Let o be the shortest prefix of the schedule of o that includes the
first event in which a message is received. Note that the edge other than the one over
which the first message is received is open. Since exactly one message is received in
o and one edge is open, o is clearly an open schedule that satisfies the requirements
of the lemma. O

The next lemma provides the inductive step of the pasting procedure. As men-
tioned above, the general approach is to take two open schedules on smaller rings
in which many messages are received and to paste them together at the open edges
into an open schedule on the bigger ring in which the same messages plus extra
messages are received. Intuitively, one can see that two open schedules can be pasted
together and still behave the same (this will be proved formally below). The key step,
however, is forcing the additional messages to be received. After the two smaller
rings are pasted together, the processors in the half that does not contain the eventual
leader must somehow learn the id of the eventual leader, and this can only occur
through message exchanges. We unblock the messages delayed on the connecting
open edges and continue the schedule, arguing that many messages must be received.
Our main problem is how to do this in a way that will yield an open schedule on
the bigger ring so that the lemma can be applied inductively. The difficulty is that
if we pick in advance which of the two edges connecting the two parts to unblock,
then the algorithm can choose to wait for information on the other edge. To avoid
this problem, we first create a ‘test’ schedule, learning which of the two edges, when

40 LEADER ELECTION IN RINGS

41 g2

Fl'g. 3.4 R, and R,.

Rl Rz

Fig. 3.5 Pasting together R, and H: into R.

unblocked, causes the larger number of messages to be received. We then go back to
our original pasted schedule and only unblock that edge.

Lemma 3.7 Choose n > 2. Assume that for every set of % identifiers, there is a
ring using those identifiers that has an open schedule of A in which at least M (%)
messages are received. Then for every set of n identifiers, there is a ring using those
identifiers that has an open schedule of A in which at least 2M (3) + 3(% — 1)
messages are received.

Proof. Let S be a set of n identifiers. Partition S into two sets .S; and S5, each
of size 5. By assumption, there exists a ring 1) using the identifiers in S; that has
an open schedule ¢y of A in which at least M (5) messages are received. Similarly,
there exists ring Rs using the identifiers in S¢ that has an open schedule o, of A
in which at least M (%) messages are received. Let e; and ez be the open edges of
oy and o, respectively. Denote the processors adjacent to e, by p; and ¢; and the
processors adjacent to es by ps and ¢,. Paste R; and R, together by deleting edges
e; and e; and connecting p; to ps with edge e, and g, to g2 with edge e,; denote the
resulting ring by R. (This is illustrated in Figs. 3.4 and 3.5.)

We now show how to construct an open schedule o of A on R in which2M (%) +
(% — 1) messages are received. The idea is to first let each of the smaller rings
execute its wasteful open schedule separately.

We now explain why o followed by o5 constitutes a schedule for A inthe ring R.
Consider the occurrence of the event sequence oy starting in the initial configuration
for ring R. Since the processors in R; cannot distinguish during these events whether
R; is an independent ring or a sub-ring of R, they execute o exactly as though R,

ASYNCHRONOUS RINGS 41

was independent. Consider the subsequent occurrence of the event sequence o5 in
the ring R. Again, since no messages are delivered on the edges that connect R;
and R,, processors in R, cannot distinguish during these events whether Ry is an
independent ring or a sub-ring of R. Note the crucial dependence on the uniformity
assumption.

Thus 7103 is a schedule for R in which at least 2/ (5) messages are received.

We now show how to force the algorithm into receiving é«(% — 1) additional
messages by unblocking either e, or eq4, but not both.

Consider every finite schedule of the form o1 0203 in which e, and e, both remain
open. If there is a schedule in which at least %(% — 1) messages are received in o3,
then the lemma is proved.

Suppose there is no such schedule. Then there exists some schedule o 0903 that
results in a “‘quiescent” configuration in the corresponding execution. A processor
state is said to be qguiescent if there is no sequence of computation events from that
state in which a message is sent. That is, the processor will not send another message
until it receives a message. A configuration is said to be guiescent (with respect to
e, and e,) if no messages are in transit except on the open edges e, and e, and every
processor is in a quiescent state.

Assume now, without loss of generality, that the processor with the maximal
identifier in R is in the sub-ring R;. Since no message is delivered from R; to Rs,
processors in R, do not know the identifier of the leader, and therefore no processor
in Ry can terminate at the end of oy 0503 (as in the proof of Lemma 3.6).

We claim that in every admissible schedule extending o) o203, every processor in
the sub-ring R must receive at least one additional message before terminating. This
holds because a processor in K5 can learn the identifier of the leader only through
messages that arrive from R;. Since in 0y 0203 no message is delivered between R,
and R», such a processor will have to receive another message before it can terminate.
This argument depends on the assumption that all processors must learn the id of the
leader.

The above argument clearly implies that an additional Q(%) messages must be
received on R. However, we cannot conclude our proof here because the above
claim assumes that both e, and e, are unblocked (becasue the schedule must be
admissible}, and thus the resulting schedule is not open. We cannot a priori claim
that many messages will be received if e, alone is unblocked, because the algorithm
might decide to wait for messages on e,. However, we can prove that it suffices to
unblock only one of e, or e, and still force the algorithm to receive (2(5) messages.
This is done in the next claim.

Claim 3.8 There exists a finite schedule segment o4 in which %(% — 1) messages are
received, such that 01090304 is an open schedule in which either ep Or €4 is open.

Proof. Let o{ be such that o 020307 is an admissible schedule. Thus all messages
are delivered on e, and e, and all processors terminate. As we argued above, since
each of the processors in R, must receive a message before termination, at least 5
messages are received in o) before A terminates. Let o) be the shortest prefix of o}
in which 5 — 1 messages are received. Consider all the processors in R that received

42 LEADER ELECTION IN RINGS

Fig. 3.6 Nlllustration for Claim 3.8.

messages in oy. Since o starts in a quiescent configuration in which messages are
in transit only on e, and e,, these processors form two consecutive sets of processors
P and (. P contains the processors that are awakened because of the unblocking of
e, and thus contains at least one of p; and py. Similarly, () contains the processors
that are awakened because of the unblocking of e, and thus contains at least one of
g1 and g, (see Fig. 3.6).

Since at most 3 — 1 processors are included in these sets and the sets are consec-
utive, it follows that the two sets are disjoint. Furthermore, the number of messages
received by processors in one of the sets is at least (% — 1). Without loss of
generality, assume this set is P, that is, the one containing p; or ps. Let o4 be the
subsequence of ¢ that contains only the events on processors in P. Since in o, there
is no communication between processors in P and processors in (), 01020304 is a
schedule. By assumption, at least (% — 1) messages are received in 4. Further-
more, by construction, no message is delivered on e,. Thus ¢y 030304 is the desired
open schedule. I

To summarize, we started with two separate schedules on R; and R,, in which
2M (%) messages were received. We then forced the ring into a quiescent con-
figuration. Finally, we forced (% — 1) additional messages to be received from
the quiescent configuration, while keeping either e, or e, open. Thus we have con-

structed an open schedule in which at least 2 (2)+ £ (2 — 1) messages are received.

O

3.4 SYNCHRONOUS RINGS

We now turn to the problem of electing a leader in a synchronous ring. Again, we
present both upper and lower bounds. For the upper bound, two leader election algo-

SYNCHRONOUS RINGS 43

rithms that require O (n) messages are presented. Obviously, the message complexity
of these algorithms is optimal. However, the running time is not bounded by any
function (solely) of the ring size, and the algorithms use processor identifiers in an
unusual way. For the lower bound, we show that any algorithm that is restricted to
use only comparisons of identifiers, or is restricted to be time bounded (that is, to
terminate in a number of rounds that depends only on the ring size), requires at least
Q(n log n) messages.

3.4.1 An O(n) Upper Bound

The proof of the Q(nlogn) lower bound for leader election in an asynchronous
ring presented in Section 3.3.3, heavily relied on delaying messages for arbitrarily
long periods. It is natural to wonder whether better results can be achieved in
the synchronous model, where message delay is fixed. As we shall see, in the
synchronous model information can be obtained not only by receiving a message but
also by not receiving a message in a certain round.

In this section, two algorithms for electing a leader in a synchronous ring are
presented. Both algorithms require O(n) messages. The algorithms are presented
for a unidirectional ring, where communication is in the clockwise direction. Of
course, the same algorithms can be used for bidirectional rings. The first algorithm
is nonuniform, and requires all processors in the ring to start at the same round, as
is provided for in the synchronous model. The second algorithm is uniform, and
processors may start in different rounds, that is, the algorithm works in a model that
is slightly weaker than the standard synchronous model.

3.4.1.1 The Nonuniform Algorithm The nonuniform algorithm elects the
processor with the minimal identifier to be the leader. It works in phases, each
consisting of n rounds. In phase (> 0), if there is a processor with identifier ¢, it
is elected as the leader, and the algorithm terminates. Therefore, the processor with
the minimal identifier is elected.

In more detail, phase ¢ includesroundsn - i+ 1,n-i1+2,...,n- 7+ n. Atthe
beginning of phase 4, if a processor’s identifier is 7, and it has not terminated yet,
the processor sends a message around the ring and terminates as a leader. If the
processor’s identifier is not ¢ and it receives a message in phase i, it forwards the
message and terminates the algorithm as a non-leader.

Because identifiers are distinct, it is clear that the unique processor with the
minimal identifier terminates as a leader. Moreover, exactly n messages are sent in
the algorithm; these messages are sent in the phase in which the winner is found.
The number of rounds, however, depends on the minimal identifier in the ring. More
precisely, if m is the minimal identifier, then the algorithm takes n - (m 4 1) rounds.

Note that the algorithm depends on the requirements mentioned—knowledge of
n and synchronized start. The next algorithm overcomes these restrictions.

3.4.1.2 The Uniform Algorithm The next leader election algorithm does not
require knowledge of the ring size. In addition, the algorithm works in a slightly

44 LEADER ELECTION IN RINGS

weakened version of the standard synchronous model, in which the processors do
not necessarily start the algorithm simultaneously. More precisely, a processor either
wakes up spontaneously in an arbitrary round or wakes up upon receiving a message
from another processor (see Exercise 3.7).

The uniform algorithm uses two new ideas. First, messages that originate at
different processors are forwarded at different rates. More precisely, a message that
originates at a processor with identifier ¢ is delayed 2 — 1 rounds at each processor
that receives it, before it is forwarded clockwise to the next processor. Second,
to overcome the unsynchronized starts, a preliminary wake-up phase is added. In
this phase, each processor that wakes up spontaneously sends a “wake-up” message
around the ring; this message is forwarded withoutdelay. A processor that receives a
wake-up message before starting the algorithm does not participate in the algorithm
and will only act as a relay, forwarding or swallowing messages. After the preliminary
phase the leader is elected among the set of participating processors.

The wake-up message sent by a processor contains the processor’s identifier.
This message travels at a regular rate of one edge per round and eliminates all the
processors that are not awake when they receive the message. When a message from
a processor with identifier ¢ reaches a participating processor, the message starts to
travel at a rate of 2¢; to accomplish this slowdown, each processor that receives such
a message delays it for 2/ — 1 rounds before forwarding it. Note that after a message
reaches an awake processor, all processors it will reach are awake. A message is
in the first phase until it is received by a participating processor; after reaching a
participating processor, a message is in the second phase, and it is forwarded at a rate
of 2%,

Throughout the algorithm, processors forward messages. However, as in previous
leader election algorithms we have seen, processors sometimes swallow messages
without forwarding them. In this algorithm, messages are swallowed according to
the following rules:

1. A participating processor swallows a message if the identifier in the message is
larger than the minimal identifier it has seen so far, including its own identifier.

2. A relay processor swallows a message if the identifier in the message is larger
than the minimal identifier it has seen so far, not including its own id.

The pseudocode appears in Algorithm 6.

As we prove below, n rounds after the first processor wakes up, only second-phase
messages are left, and the leader is elected among the participating processors. The
swallowing rules guarantee that only the participating processor with the smallest
identifier receives its message back and terminates as a leader. This is proved in
Lemma 3.9.

For each 7, 0 < i < n, let id; be the identifier of processor p; and (id;) be the
message originated by p;.

Lemma 3.9 Only the processor with the smallest identifier among the participating
processors receives its own message back.

SYNCHRONOUS RINGS 45

Algorithm 6 Synchronous leader election: code for processor p;, 0 < ¢ < n.

Initially waiting is empty and status is asleep

1: let R be the set of messages received in this computation event
2: S:=10 // the messages to be sent

3: if status = asleep then

4 if R is empty then /f woke up spontaneously
5: status = participating

6: min = id

7 add (id I)to S // first phase message
8 else

9 status .= relay

10: min 1= o0

9: foreach {m,h) in R do
10: if m < min then

11 become not elected

12: min:=m

13: if (status = relay) and (h = 1) then /I m stays first phase
14: add (m,h) to S

15: else /I m is/becomes second phase
16: add (m,2) to waiting tagged with current round number

17: elseif mn = id then become elected

/1 if m > min then message is swallowed
18: for each (m,2) in waiting do
19: if (m,2) was received 2™ — 1 rounds ago then

20: remove (m) from waiting and add to S

21: send S to left

Proof. Let p; be the participating processor with the smallest identifier. (Note that
at least one processor must participate in the algorithm.) Clearly, no processor,
participating or not, can swallow {id;).

Furthermore, since (id;) is delayed at most 2% rounds at each processor, p;
eventually receives its message back.

Assume, by way of contradiction, that some other processor p;, j # i, also
receives back its message (id;). Thus, (id;) must pass through all the processors in
the ring, including p;. Butid; < id;, and since p; is a participating processor, it does
not forward (id;), a contradiction. O

The above lemma implies that exactly one processor receives its message back.
Thus this processor will be the only one to declare itself a leader, implying the

46 LEADER ELECTION IN RINGS

correctness of the algorithm. We now analyze the number of messages sent during
an admissible execution of the algorithm.

To calculate the number of messages sent during an admissible execution of the
algorithm we divide them into three categories:

1. First-phase messages

2. Second-phase messages sent before the message of the eventual leader enters
its second phase

3. Second-phase messages sent after the message of the eventual leader enters its
second phase

Lemma 3.10 The total number of messages in the first category is at most n.

Proof. 'We show that at most one first-phase message is forwarded by each processor,
which implies the lemma.

Assume, by way of contradiction, that some processor p; forwards two messages in
their first phase, (id;) from p; and (id}) from px. Assume, without loss of generality,
that p; is closer to p; than py is to p;, in terms of clockwise distance. Thus, (idk)
must pass through p; before it arrives at p;. If (idy) arrives at p; after p; woke up and
sent (id;), (idx) continues as a second-phase message, at a rate of 2/% ; otherwise, p;
does not participate and (id;) is not sent. Thus either (id;) arrives at p; as a second
phase message or (id;) is not sent, a contradiction. O

Let r be the first round in which some processor starts executing the algorithm,
and let p; be one of these processors. To bound the number of messages in the second
category, we first show that n rounds after the first processor starts executing the
algorithm, all messages are in their second phase.,

Lemma 3.11 Ifp; is at (clockwise) distance k from p;, then a first-phase message is
received by p; no later than round r + k.

Proof. The proof is by induction on k. The base case, ¥ = 1, is obvious because
pi’s neighbor receives p;’s message in round r + 1. For the inductive step, assume
that the processor at (clockwise) distance k — 1 from p; receives a first-phase message
no later than round » + k& — 1. If this processor is already awake when it receives
the first-phase message, it has already sent a first-phase message to its neighbor p;;
otherwise, it forwards the first-phase message to p; in round r + k. O

Lemma 3.12 The total number of messages in the second category is at most n.

Proof. Asshowninthe proofof Lemma 3.10, at most one first-phase message is sent
on each edge. Since by round r + n one first-phase message was sent on every edge,
it follows that after round r + n no first-phase messages are sent. By Lemma 3.11,
the message of the eventual leader enters its second phase at most n rounds after the
first message of the algorithm is sent. Thus messages from the second category are
sent only in the n rounds following the round in which the first processor woke up.

SYNCHRONQUS RINGS 47

Message (i) in its second phase is delayed 2! — 1 rounds before being forwarded.
Thus (i) is sent at most 2 times in this category. Since messages containing smaller
identifiers are forwarded more often, the maximum number of messages is obtained
when all the processors participate, and when the identifiers are as small as possible,
thatis, 0, 1,...,n — 1. Note that second-phase messages of the eventual leader (in
our case, 0) are not counted in this category. Thus the number of messages in the
second category is at most Y ;' & < n. O

Let p; be the processor with the minimal identifier; no processor forwards a
message after it forwards (id;). Once (id;) returns to p;, all the processors in the ring
have already forwarded it, and therefore we have the following lemma:

Lemma 3.13 No message is forwarded after (id;) returns to p;.
Lemma 3.14 The total number of messages in the third category is at most 2n.

Proof. Let p; be the eventual leader, and let p; be some other participating processor.
By Lemma 3.9, id; < id;. By Lemma 3.13, there are no messages in the ring after
pi receives its message back. Since (id;) is delayed at most 2°% rounds at each
processor, at most n - 29 rounds are needed for (id;) to return to p;. Therefore,
messages in the third category are sent only during n - 299 rounds. During these
rounds, (id;) is forwarded at most

1

id; id; —id;
——.-n -2 = 20T
21dj

times. Hence, the total number of messages transmitted in this category is at most

n—-1

n
Z 2id1 —~idy

=0
By the same argument as in the proof of Lemma 3.12, this is less than or equal to

1
n
Qk
0

S
I

<2n

e
1]

Lemmas 3.10, 3.12, and 3.14 imply:

Theorem 3.15 There is a synchronous leader election algorithm whose message
complexity is at most 4n.

Now consider the time complexity of the algorithm. By Lemma 3.13, the compu-
tation ends when the elected leader receives its message back. This happens within
O(n2') rounds since the first processor starts executing the algorithm, where 1 is the
identifier of the elected leader.

48 LEADER ELECTION IN RINGS

3.42 An Q(nlogn) Lower Bound for Restricted Algorithms

In Section 3.4.1, we presented two algorithms for electing a leader in synchronous
rings whose worst-case message complexity is O(n). Both algorithms have two
undesirable properties. First, they use the identifiers in a nonstandard manner (to
decide how long a message should be delayed). Second, and more importantly,
the number of rounds in each admissible execution depends on the identifiers of
processors. The reason this is undesirable is that the identifiers of the processors can
be huge relative to n.

In this section, we show that both of these properties are inherent for any message
efficient algorithm. Specifically, we show that if an algorithm uses the identifiers
only for comparisons it requires 2(n log n) messages. Then we show, by reduction,
that if an algorithm is restricted to use a bounded number of rounds, independent of
the identifiers, then it also requires Q(n log n) messages.

The synchronous lower bounds cannot be derived from the asynchronous lower
bound (of Theorem 3.5), because the algorithms presented in Section 3.4.1 indicate
that additional assumptions are necessary for the synchronous lower bound to hold.
The synchronous lower bound holds even for nonuniform algorithms, whereas the
asynchronous lower bound holds only for uniform algorithms. Interestingly, the
converse derivation, of the asynchronous result from the synchronous, is correct
and provides an asynchronous lower bound for nonuniform algorithms, as explored
in Exercise 3.11.

3.4.2.1 Comparison-Based Algorithms In this section, we formally define
the concept of comparison-based algorithms.

For the purpose of the lower bound, we assume that all processors begin executing
at the same round.

Recall that a ring is specified by listing the processors’ identifiers in clockwise
order, beginning with the smallest identifier. Note that in the synchronous model an
admissible execution of the algorithm is completely defined by the initial configura-
tion, because there is no choice of message delay or relative order of processor steps.
The initial configuration of the system, in turn, is completely defined by the ring,
that is, by the listing of processors’ identifiers according to the above rule. When the
choice of algorithm is clear from context, we will denote the admissible execution
determined by ring R as exec(R).

Two processors, p; inring R and p; inring Ry, are matching if they both have the
same position in the respective ring specification. Note that matching processors are
at the same distance from the processor with the smallest identifier in the respective
rings.

Intuitively, an algorithm is comparison based if it behaves the same on rings that
have the same order pattern of the identifiers. Formally, tworings, g, ..., %, and
Yo, - - -» Yn—1, are order equivalent if for every 7 and j, z; < z; ifand only ify; < y;.
Recall that the k-neighborhood of a processor p; in a ring is the sequence of 2k + 1
identifiers of processors p;_k, . . ., pi—1, Pi, Pi+1, - - - , Pi+k (all indices are calculated

SYNCHRONOUS RINGS 49

modulo n). We extend the notion of order equivalence to k-neighborhoods in the
obvious manner.

We now define what it means to “behave the same.” Intuitively, we would like to
claim that in the admissible executions on order equivalent rings K, and R, the same
messages are sent and the same decisions are made. In general, however, messages
sent by the algorithm contain identifiers of processors; thus messages sent on 2; will
be different from messages sent on Rs. For our purpose, however, we concentrate
on the message pattern, that is, when and where messages are sent, rather than their
content, and on the decisions. Specifically, consider two executions «; and a2 and
two processors p; and p;. We say that the behavior of p; in a is similar in round k
to the behavior of p; in a4 if the following conditions are satisfied:

1. p; sends a message to its left (right) neighbor in round & in «; if and only if p;
sends a message to its left (right) neighbor inround £ in ag

2. p; terminates as a leader in round k of o, if and only if p; terminates as a
leader in round & of a9

We say that that the behaviors of p; in oy and p; in a3 are similar if they are similar
in all rounds £ > (). We can now formally define comparison-based algorithms.

Definition 3.2 An algorithmis comparison based if for every pair of order-equivalent
rings K1 and Ry, every pair of matching processors have similar behaviors in
exec(R1) and exec(R3).

3.4.2.2 Lower Bound for Comparison-Based Algorithms let A be a
comparison-based leader election algorithm. The proof considers a ring that is highly
symmetric in its order patterns, thatis, a ring in which there are many order-equivalent
neighborhoods. Intuitively, as long as two processors have order-equivalent neigh-
borhoods they behave the same under A. We derive the lower bound by executing
A on a highly symmetric ring and arguing that if a processor sends a message in a
certain round, then all processors with order-equivalent neighborhoods also send a
message in that round.

A crucial point in the proof is to distinguish rounds in which information is
obtained by processors from rounds in which no information is obtained. Recall that
in a synchronous ring it is possible for a processor to obtain information even without
receiving a message. For example, in the nonuniform algorithm of Section 3.4.1, the
fact that no message is received in rounds 1 through n implies that no processor in
the ring has the identifier 0. The key to the proof that follows is the observation that
the nonexistence of a message in a certain round r is useful to processor p; only ifa
message could have been received in this round in a different, but order-equivalent,
ring. For example, in the nonuniform algorithm, if some processor in the ring had the
identifier 0, a message would have been received in rounds 1, ..., n. Thus a round
in which no message is sent in any order-equivalent ring is not useful. Such useful
rounds are called active, as defined below:

50 LEADER ELECTION IN RINGS

Definition 3.3 A round r is active in an execution on a ring R if some processor
sends a message in round r of the execution. When R is understood from context, we
denote by i, the index of the kth active round.’

Recall that, by definition, a comparison-based algorithm generates similar behav-
iors on order-equivalent rings. This implies that, for order equivalent rings R, and
Ry, around is active in exec(R,) if and only if it is active in exec(Hz).

Because information in messages can travel only k& processors around the ring in
k rounds, the state of a processor after round k& depends only on its k-neighborhood.
We have, however, a stronger property that the state of a processor after the kth active
round depends only on its k-neighborhood. This captures the above intuition that
information is obtained only in active rounds and is formally proved in Lemma 3.16.
Note that the lemma does not require that the processors be matching (otherwise the
claim follows immediately from the definition) but does require that their neighbor-
hoods be identical. This lemma requires the hypothesis that the two rings be order
equivalent. The reason is to ensure that the two executions under consideration have
the same set of active rounds; thus ri is well-defined.

Lemma 3.16 Let Ry and R be order-equivalent rings, and let p; in R1 and p; in Ry
be two processors with identical k-neighborhoods. Then the sequence of transitions
that p; experiences in rounds 1 through vy of exec(R,) is the same as the sequence
of transitions that p; experiences in rounds 1 through vy, of exec(R>).

Proof. Informally, the proof shows that after & active rounds, a processor may learn
only about processors that are at most k& away from itself.

The formal proof follows by induction on k. For the base case £ = 0, note that
two processors with identical (-neighborhoods have the same identifiers, and thus
they are in the same state.

For the inductive step, assume that every two processors with identical (£ — 1)-
neighborhoods are in the same state after the (k — 1)-st active round. Since p; and
p; have identical k-neighborhoods, they also have identical (& — 1)-neighborhoods;
therefore, by the inductive hypothesis, p; and p; are in the same state after the
(k — 1)-st active round. Furthermore, their respective neighbors have identical
(k — 1)-neighborhoods. Therefore, by the inductive hypothesis, their respective
neighbors are in the same state after the (k — 1)-st active round.

In the rounds between the (k — 1)-st active round and the kth active round (if there
are any), no processor receives any message and thus p; and p; remain in the same
state as each other, and so do their respective neighbors. (Note that p; might change
its state during the nonactive rounds, but since p; has the same transition function,
it makes the same state transition.) In the kth active round, if both p; and p; do not
receive messages they are in the same states at the end of the round. If p; receives
a message from its right neighbor, p; also receives an identical message from its

IRecall that once the ring is fixed, the whole admissible execution is determined because the system is
synchronous.

SYNCHRONOUS RINGS 51

60
95 90

93)

94 91

92

Fig. 3.7 Example for the proof of Lemma 3.17,;k = 1and n = 8.

right neighbor, because the neighbors are in the same state, and similarly for the left
neighbor. Hence, p; and p; are in the same state at the end of the kth active round, as
needed. [

Lemma 3.17 extends the above claim from processors with identical k-neighborhoods
to processors with order-equivalent k-neighborhoods. It relies on the fact that A4 is
comparison based. Furthermore, it requires the ring R to be spaced, which intuitively
means that for every two identifiers in R, there are n unused identifiers between
them, where n is the size of the ring. Formally, a ring of size n is spaced if for every
identifier z in the ring, the identifiers z — 1 through z — n are not in the ring.

Lemma 3.17 Let R be a spaced ring and let p; and p; be two processors with order-
equivalent k-neighborhoods in R. Then p; and p; have similar behaviors in rounds
1 through ry. of exec(R).

Proof. We construct another ring R’ that satisfies the following:
* p,’s k-neighborhood is the same as p;’s k-neighborhood from R
¢ theidentifiers in R’ are unique
e R is order equivalent to R with p; in R’ matching p; in R

R’ can be constructed because R is spaced (see an example in Fig. 3.7).

By Lemma 3.16, the sequence of transitions that p; experiences inrounds 1 through
7k of exec() is the same as the sequence of transitions that p; experiences in rounds
1 through 7, of exec(R’). Thus p;’s behavior in rounds 1 through ri of exec(R) is
similar to p;’s behavior in rounds 1 through r, of exec(R’). Since the algorithm is
comparison based and p; in R’ is matching to p; in R, p;’s behavior in rounds 1
through ry of exec(R') is similar to p;’s behavior in rounds 1 through ;. of exec(R).

52 LEADER ELECTION IN RINGS

0002 =10

111, =7 100, = 4

011, =3 0102, =2

1013 =5 1102 =6
0012 =1

Fig. 3.8 Thering RY".

Thus p;’s behavior and p;’s behavior in rounds 1 through 7« of exec(R) are similar.

O

We can now prove the main theorem:

Theorem 3.18 For every n > 8 that is a power of 2, there exists a ring Sy, of size
n such that for every synchronous comparison-based leader election algorithm A,
Q2(n logn) messages are sent in the admissible execution of A on S,,.

Proof. Fix any such algorithm A. The key to this proof is the construction of
Sp.» a highly symmetric ring, in which many processors have many order equivalent
neighborhoods. S, is constructed in two steps.

First, define the n-processor ring R>" as follows. For each i, 0 < i < n, let p;’s
identifier be rev(z), where rev(i) is the integer whose binary representation using
log n bits is the reverse of the binary representation of 7. (See the special case n = 8
in Fig. 3.8.) Consider any partitioning of R[*" into consecutive segments of length j,
where j is a power of 2, It can be shown that all these segments are order equivalent
(see Exercise 3.9).

Sy, is a spaced version of Rjt¥, obtained by multiplying each identifier in R by
n + 1 and then adding n to it. These changes do not alter the order equivalence of
segments.

Lemma 3.19 quantifies how many order-equivalent neighborhoods of a given size
there are in .S,,. This result is then used to show, in Lemma 3.20, a lower bound on
the number of active rounds of the algorithms and to show, in Lemma 3.21, a lower
bound on the number of messages sent in each active round. The desired bound of
((nlogn) is obtained by combining the latter two bounds.

Lemma 3.19 Forallk < n/8, and forall k-neighborhoods N of Sy, there are more
zjhar;ﬂ 5-(2—;:?1—) k-neighborhoods of Sy, that are order equivalent to N (including N
itself).

SYNCHRONOUS RINGS 53

Proof. N consists of a sequence of 2k + 1 identifiers. Let j be the smallest power of
2 that is bigger than 2k + 1. Partition 5,, into & consecutive segments such that one
segment totally encompasses V. By the construction of Sy, all of these segments are
order equivalent. Thus there are at least % neighborhoods that are order equivalent
to N. Since j < 2(2k + 1), the number of neighborhoods order equivalent to N is
more than 5('2‘7%-!‘-_1—) O

Lemma 3.20 The number of active rounds in exec(Sy,) is at least n /8.

Proof. Let 7" be the number of active rounds. Suppose in contradiction T' < n /8.
Let p; be the processor that is elected the leader in exec(S,). By Lemma 3.19,
there are more than m T-neighborhoods that are order equivalent to p;’s 7'-
neighborhood. By assumptionon 7',

n > n _ 2n
22T +1) 7 2(2n/84+1) n+4

and, sincen > 8, nlf’z > 1. Thus there exists some processor p; other than p; whose
T-neighborhood is order equivalent to p;’s 7-neighborhood. By Lemma 3.17, p; is
also elected, contradicting the assumed correctness of A. O

Lemma 3.21 Atleast 555y messages are sent in the kth active round of exec(Sy),

foreachk, | < k <n/8.

Proof. Consider the kth active round. Since it is active, at least one processor sends
a message, say p;. By Lemma 3.19, there are more than m’-‘m processors whose
k-neighborhoods are order equivalent to p;’s k-neighborhood. By Lemma 3.17, each
of them also sends a message in the kth active round. O

We now finish the proof of the main theorem. By Lemma 3.20 and Lemma 3.21,
the total number of messages sent in exec(Sy,) is at least

n/8 n n n/8 1 n. n
PP R DRI
= 2(2k + 1) 6 Pt k 6 8
which is Q(n logn). O

Note that in order for this theorem to hold, the algorithm need not be comparison
based for every set of identifiers drawn from the natural numbers, but only for
identifiers drawn from the set {0, 1,...,n% 4+ 2n — 1}. The reason is that the largest
identifier in S, isn®+ n—1 = (n+ 1) -rev(n —~ 1) 4 n (recall that n is a power
of 2 and thus the binary representation of n — 1 is a sequence of 1s). We require the
algorithm to be comparison based on all identifiers between 0 and n” + 2n — 1, and
not just on identifiers that occur in Sy, because the proof of Lemma 3.17 uses the
fact that the algorithm is comparison based on all identifiers that range from n less
than the smallest in S,, to n greater than the largest in S, .

54 LEADER ELECTION IN RINGS

3.4.2.3 Lower Bound for Time-Bounded Algorithms The next definition
disallows the running time of an algorithm from depending on the identifiers: It
requires the running time for each ring size to be bounded, even though the possible
identifiers are not bounded, because they come from the set of natural numbers.

Definition 3.4 A synchronous algorithm A is time-bounded if, for each n, the worst-
case running time of A over all rings of size n, with identifiers drawn from the natural
numbers, is bounded.

We now prove the lower bound for time-bounded algorithms, by reduction to
comparison-based algorithms. We first show how to map from time-bounded algo-
rithms to comparison-based algorithms. Then we use the lower bound of ((n log n)
messages for comparison-based algorithms to obtain a lower bound on the number
of messages sent by time-bounded algorithms. Because the comparison-based lower
bound as stated is only for values of n that are powers of 2, the same is true here,
although the lower bound holds for all values of n (see chapter notes).

To map from time-bounded to comparison-based algorithms, we require defini-
tions describing the behavior of an algorithm during a bounded amount of time.

Definition 3.5 A synchronous algorithm A is t-comparison based over identifier set
S for ring size n if, for every two order equivalent rings, R, and R, of size n, every
pair of matching processors have similar behaviors in rounds 1 throught of exec(R1)
and exec(Ry).

Intuitively, an r-comparison based algorithm over S is an algorithm that behaves
as a comparison-based algorithmin the first r rounds, as long as identifiers are chosen
from S. If the algorithm terminates within » rounds, then this is the same as being
comparison based over S for all rounds.

The first step is to show that every time-bounded algorithm behaves as a comparison-
based algorithm over a subset of its inputs, provided that the input set is sufficiently
large. To do this we use the finite version of Ramsey’s theorem. Informally, the
theorem states that if we take a large set of elements and we color each subset of
size k with one of ¢ colors, then we can find some subset of size £ such that all its
subsets of size k£ have the same color. If we think of the coloring as partitioning into
equivalence classes (two subsets of size k£ belong to the same equivalence class if
they have the same color), the theorem says that there is a set of size £ such that all its
subsets of size k are in the same equivalence class. Later, we shall color rings with
the same color if the behavior of matching processors is similar in them.

For completeness, we repeat Ramsey’s theorem:

Ramsey’s Theorem (finite version) For all integers k, £, and t, there exists an
integer f(k,£,t) such that for every set S of size at least f(k,£,t), and every t-
coloring of the k-subsets of S, some {-subset of S has all its k-subsets with the same
color.

In Lemma 3.22, we use Ramsey’s theorem to map any time-bounded algorithmto
a comparison-based algorithm.

SYNCHRONOUS RINGS 55

Lemma 3.22 Let A be a synchronous time-bounded algorithm with running time
r(n). Then, for every n, there exists a set C, of n? + 2n identifiers such that A is
r(n)-comparison based over Cy, for ring size n.

Proof. Fix n. Let Y and Z be any two n-subsets of N (the natural numbers). We
say that Y and Z are equivalent subsets if, for every pair of order equivalent rings,
R, withidentifiers from Y and R» with identifiers from Z, matching processors have
similar behaviors in rounds 1 through () of exec(R1) and exec(R3). This definition
partitions the n-subsets of N into finitely many equivalence classes, since the term
‘similar behavior’ only refers to the presence or absence of messages and terminated
states. We color the n-subsets of & such that two n-subsets have the same color if
and only if they are in the same equivalence class.

By Ramsey’s theorem, if we take ¢ to be the number of equivalence classes (colors),
¢ tobe n” + 2n, and k to be n, then, since N is infinite, there exists a subset C,, of N
of cardinality n? + 2n such that all n-subsets of C,, belong to the same equivalence
class.

We claim that A is an 7{n)-comparison based algorithm over C,, for ring size n.
Consider two order-equivalent rings, R, and Rs, of size n with identifiers from C,.
Let Y be the set of identifiers in R; and Z be the set of identifiers in Bs. Y and
Z are n-subsets of Cy,; therefore, they belong to the same equivalence class. Thus
matching processors have similar behaviors in rounds 1 through r(n) of exec(R;)
and exec(R3). Therefore, A is an 7(n)-comparison based algorithm over C;, for ring
size n. C

Theorem 3.18 implies that every comparison-based algorithm has worst-case mes-
sage complexity {}(n log n). We cannot immediately apply this theorem now, because
we have only shown that a time-bounded algorithm A is comparison based on a spe-
cific set of ids, not on all ids. However, we will use A to design another algorithm
A’, with the same message complexity as A, that is comparison based on rings of
size n with ids from the set {0, 1,...,n% 4+ 2n — 1}. As was discussed just after the
proof of Theorem 3.18, this will be sufficient to show that the message complexity
of A’ is Q(n log n). Thus the message complexity of A is Q(nlogn).

Theorem 3.23 For every synchronous time-bounded leader election algorithm A
and every n > 8 that is a power of 2, there exists a ring R of size n such that
Q(nlogn) messages are sent in the admissible execution of A on R.

Proof. Fix an algorithm A satisfying the hypotheses of the theorem with running
time r(n). Fix n; let Cy, be the set of identifiers guaranteed by Lemma 3.22, and let
€0,C1, - - -, Cn24+2n -1 be the elements of C,, in increasing order.

We define an algorithm A’ that is comparison based on rings of size n with
identifiers from the set {0, 1, . . ., n?+2n— 1} and that has the same time and message
complexity as A. In algorithm A’, a processor with identifier i executes algorithm A
as if though had the identifier ¢;. Since A is r(n)-comparison based over C,, for ring
size n and since A terminates within r(n) rounds, it follows that A’ is comparison
based on rings of size n with identifiers from the set {0,1,...,n% 4+ 2n — 1}.

56

LEADER ELECTION IN RINGS

By Theorem 3.18, there is a ring of size n with identifiers from {0, 1,...,n% +
2n — 1} in which A’ sends 2(nlogn) messages. By the way A’ was constructed,
there is an execution of A in a ring of size n with identifiers from C}, in which the

same messages are sent, which proves the theorem.]
Exercises
3.1 Prove that there is no anonymous leader election algorithm for asynchronous

3.2

33

34

35

3.6

3.7

3.8

39

ring systems.

Prove that there is no anonymous leader election algorithm for synchronous
ring systems that is uniform.

Is leader election possible in a synchronous ring in which all but one processor
have the same identifier? Either give an algorithm or prove an impossibility
result.

Consider the following algorithm for leader election in an asynchronous ring:
Each processor sends its identifier to its right neighbor; every processor for-
wards a message (to its right neighbor) only if it includes an identifier larger
than its own.

Prove that the average number of messages sent by this algorithmis O(n log n),
assuming that identifiers are uniformly distributed integers.

In Section 3.3.3, we have seen a lower bound of (2(n log n) on the number of
messages required for electing a leader in an asynchronous ring. The proof of
the lower bound relies on two additional properties: (a) the processor with the
maximal identifier is elected, and (b) all processors must know the identifier
of the elected leader.

Prove that the lower bound holds also when these two requirements are omit-
ted.

Extend Theorem 3.5 to the case in which n is not an integral power of 2.

Hint: Consider the largest n’ < n that is an integral power of 2, and prove the
theorem for n'.

Modify the formal model of synchronous message passing systems to describe
the non-synchronized start model of Section 3.4.1. That is, state the conditions
that executions and admissible executions must satisfy.

Prove that the order-equivalent ring R’ in proof of Lemma 3.17 can always be
constructed.

Recall the ring R;” from the proof of Theorem 3.18. For every partition of
R into % consecutive segments, where j is a power of 2, prove that all of
these segments are order equivalent.

