
6
SYNCHRONIZATION

In the previous chapters, we have looked at processes and communication be-
tween processes. While communication is important, it is not the entire story.
Closely related is how processes cooperate and synchronize with one another.
Cooperation is partly supported by means of naming, which allows processes to at
least share resources, or entities in general.

In this chapter, we mainly concentrate on how processes can synchronize. For
example, it is important that multiple processes do not simultaneously access a
shared resource, such as printer, but instead cooperate in granting each other tem-
porary exclusive access. Another example is that multiple processes may some-
times need to agree on the ordering of events, such as whether message ml from
process P was sent before or after message m2 from process Q.

As it turns out, synchronization in distributed systems is often much more dif-
ficult compared to synchronization in uniprocessor or multiprocessor systems.
The problems and solutions that are discussed in this chapter are, by their nature,
rather general, and occur in many different situations in distributed systems.

We start with a discussion of the issue of synchronization based on actual
time, followed by synchronization in which only relative ordering matters rather
than ordering in absolute time.

In many cases, it is important that a group of processes can appoint one proc-
ess as a coordinator, which can be done by means of election algorithms. We dis-
cuss various election algorithms in a separate section.

231

232 SYNCHRONIZATION CHAP. 6

Distributed algorithms come in all sorts and flavors and have been developed
for very different types of distributed systems. Many examples (and further refer-
ences) can be found in Andrews (2000) and Guerraoui and Rodrigues (2006).
More formal approaches to a wealth of algorithms can be found in text books
from Attiya and Welch (2004), Lynch (1996), and (Tel, 2000).

6.1 CLOCK SYNCHRONIZATION

In a centralized system, time is unambiguous. When a process wants to know
the time, it makes a system call and the kernel tells it. If process A asks for the
time. and then a little later process B asks for the time, the value that B gets will
be higher than (or possibly equal to) the value A got. It will certainly not be lower.
In a distributed system, achieving agreement on time is not trivial.

Just think, for a moment, about the implications of the lack of global time on
the UNIX make program, as a single example. Normally, in UNIX, large programs
are split up into multiple source files, so that a change to one source file only re-
quires one file to be recompiled, not all the files. If a program consists of 100
files, not having to recompile everything because one file has been changed
greatly increases the speed at which programmers can work.

The way make normally works is simple. When the programmer has finished
changing all the source files, he runs make, which examines the times at which all
the source and object files were last modified. If the source file input. c has time
2151 and the corresponding object file input.o has time 2150, make knows that
input.c has been changed since input.o was created, and thus input.c must be re-
compiled. On the other hand, if output.c has time 2144 and output.o has time 2145,
no compilation is needed. Thus make goes through all the source files to find out
which ones need to be recompiled and calls the compiler to recompile them.

Now imagine what could happen in a distributed system in which there were
no global agreement on time. Suppose that output.o has time 2144 as above, and
shortly thereafter output.c is modified but is assigned time 2143 because the clock
on its machine is slightly behind, as shown in Fig. 6-1. Make will not call the
compiler. The resulting executable binary program will then contain a mixture of
object files from the old sources and the new sources. It will probably crash and
the programmer will go crazy trying to understand what is wrong with the code.

There are many more examples where an accurate account of time is needed.
The example above can easily be reformulated to file timestamps in general. In
addition, think of application domains such as financial brokerage, security audit-
ing, and collaborative sensing, and it will become clear that accurate timing is im-
portant. Since time is so basic to the way people think and the effect of not having
all the clocks synchronized can be so dramatic, it is fitting that we begin our study
of synchronization with the simple question: Is it possible to synchronize all the
clocks in a distributed system? The answer is surprisingly complicated.

Figure 6-1. When each machine has its own clock, an event that occurred after
another event may nevertheless be assigned an earlier time.

6.1.1 Physical Clocks

Nearly all computers have a circuit for keeping track of time. Despite the
widespread use of the word "clock" to refer to these devices, they are not actually
clocks in the usual sense. Timer is perhaps a better word. A computer timer is
usually a precisely machined quartz crystal. When kept under tension, quartz crys-
tals oscillate at a well-defined frequency that depends on the kind of crystal, how
it is cut, and the amount of tension. Associated with each crystal are two registers,
a counter and a holding register. Each oscillation of the crystal decrements the
counter by one. When the counter gets to zero, an interrupt is generated and the
counter is reloaded from the holding register. In this way, it is possible to program
a timer to generate an interrupt 60 times a second, or at any other desired fre-
quency. Each interrupt is called one clock tick.

When the system is booted, it usually asks the user to enter the date and time,
which is then converted to the number of ticks after some known starting date and
stored in memory. Most computers have a special battery-backed up CMOS RAM
so that the date and time need not be entered on subsequent boots. At every clock
tick, the interrupt service procedure adds one to the time stored in memory. In this
way, the (software) clock is kept up to date.

With a single computer and a single clock, it does not matter much if this
clock is off by a small amount. Since all processes on the machine use the same.
clock, they will still be internally consistent. For example, if the file input.c has
time 2151 and file input.o has time 2150, make will recompile the source file,
even if the clock is off by 2 and the true times are 2153 and 2152, respectively.
All that really matters are the relative times.

As soon as multiple CPUs are introduced, each with its own clock, the situa-
tion changes radically. Although the frequency at which a crystal oscillator runs is
usually fairly stable, it is impossible to guarantee that the crystals in different
computers all run at exactly the same frequency. In practice, when a system has n
computers, alln crystals will run at slightly different rates, causing the (software)
clocks gradually to get out of synch and give different values when read out. This
difference in time values is called clock skew. As a consequence of this clock

233CLOCK SYNCHRONIZATIONSEC. 6.1

234 SYNCHRONIZATION CHAP. 6

skew, programs that expect the time associated with a file, object, process, or
message to be correct and independent of the machine on which it was generated
(i.e., which clock it used) can fail, as we saw in the make example above.

In some systems (e.g., real-time systems), the actual clock time is important.
Under these circumstances, external physical clocks are needed. For reasons of ef-
ficiency and redundancy, multiple physical clocks are generally considered desir-
able, which yields two problems: (1) How do we synchronize them with real-
world clocks. and (2) How do we synchronize the clocks with each other?

Before answering these questions, let us digress slightly to see how time is ac-
tually measured. It is not nearly as easy as one might think, especially when high
accuracy is required. Since the invention of mechanical clocks in the 17th century,
time has been measured astronomically. Every day, the sun appears to rise on the
eastern horizon, then climbs to a maximum height in the sky, and finally sinks in
the west. The event of the sun's reaching its highest apparent point in the sky is
called the transit of the sun. This event occurs at about noon each day. The in-
terval between two consecutive transits of the sun is called the solar day. Since
there are 24 hours in a day, each containing 3600 seconds, the solar second is de-
fined as exactly 1I86400th of a solar day. The geometry of the mean solar day cal-
culation is shown in Fig. 6-2.

Figure 6-2. Computation of the mean solar day.

In the 1940s, it was established that the period of the earth's rotation is not
constant. The earth is slowing down due to tidal friction and atmospheric drag.
Based on studies of growth patterns in ancient coral, geologists now believe that
300 million years ago there were about 400 days per year. The length of the year
(the time for one trip around the sun) is not thought to have changed; the day has
simply become longer. In addition to this long-term trend, short-term variations in

SEC.6.1 CLOCKSYNCHROMZATION 235

the length of the day also occur, probably caused by turbulence deep in the earth's
core of molten iron. These revelations led astronomers to compute the length of
the day by measuring a large number of days and taking the average before divid-
ing by 86,400. The resulting quantity was called the mean solar second.

With the invention of the atomic clock in 1948, it became possible to measure
time much more accurately, and independent of the wiggling and wobbling of the
earth, by counting transitions of the cesium 133 atom. The physicists took over the
job of timekeeping from the astronomers and defined the second to be the time it
takes the cesium 133 atom to make exactly 9,192,631,770 transitions. The choice
of 9,192,631,770 was made to make the atomic second equal to the mean solar
second in the year of its introduction. Currently, several laboratories around the
world have cesium 133 clocks. Periodically, each laboratory tells the Bureau
International de l'Heure (BIR) in Paris how many times its clock has ticked. The
BIR averages these to produce International Atomic Time, which is abbreviated
TAl. Thus TAI is just the mean number of ticks of the cesium 133 clocks since
midnight on Jan. 1,1958 (the beginning of time) divided by 9,192,631,770.

Although TAl is highly stable and available to anyone who wants to go to the
trouble of buying a cesium clock, there is a serious problem with it; 86,400 TAl
seconds is now about 3 msec less than a mean solar day (because the mean solar
day is getting longer all the time). Using TAl for keeping time would mean that
over the course of the years, noon would get earlier and earlier, until it would
eventually occur in the wee hours of the morning. People might notice this and we
could have the same kind of situation as occurred in 1582 when Pope Gregory
XIII decreed that 10 days be omitted from the calendar. This event caused riots in
the streets because landlords demanded a full month's rent and bankers a full
month's interest, while employers refused to pay workers for the 10 days they did
not work, to mention only a few of the conflicts. The Protestant countries, as a
matter of principle, refused to have anything to do with papal decrees and did not
accept the Gregorian calendar for 170years.

Figure 6-3. TAl seconds are of constant length, unlike solar seconds. Leap
seconds are introduced when necessary to keep in phase with the sun.

BIR solves the problem by introducing leap seconds whenever the dis-
crepancy between TAI and solar time grows to 800 msec. The use of leap seconds

236 SYNCHRONIZATION CHAP. 6

is iJlustrated in Fig. 6-3. This correction gives rise to a time system based on con-
stant TAl seconds but which stays in phase with the apparent motion of the sun. It
is caned Universal Coordinated Time, but is abbreviated as UTC. UTC is the
basis of all modern civil timekeeping. It has essentially replaced the old standard,
Greenwich Mean Time. which is astronomical time.

Most electric power companies synchronize the timing of their 60-Hz or 50-
Hz clocks to UTC, so when BIH announces a leap second, the power companies
raise their frequency to 61 Hz or 51 Hz for 60 or 50 sec. to advance all the clocks
in their distribution area. Since I sec is a noticeable interval for a computer, an
operating system that needs to keep accurate time over a period of years must
have special software to account for leap seconds as they are announced (unless
they use the power line for time, which is usually too crude). The total number of
leap seconds introduced into UTC so far is about 30.

To provide UTC to people who need precise time, the National Institute of
Standard Time (NIST) operates a shortwave radio station with call letters WWV
from Fort Collins, Colorado. WWV broadcasts a short pulse at the start of each
UTC second. The accuracy of WWV itself is about ±l msec, but due to random
atmospheric fluctuations that can affect the length of the signal path, in practice
the accuracy is no better than ±10 msec. In England, the station MSF, operating
from Rugby, Warwickshire, provides a similar service, as do stations in several

other countries.
Several earth satellites also offer a UTC service. The Geostationary Environ-

ment Operational Satellite can provide UTC accurately to 0.5 msec, and some
other satellites do even better.

Using either shortwave radio or satellite services requires an accurate know-
ledge of the relative position of the sender and receiver, in order to compensate
for the signal propagation delay. Radio receivers for WWV, GEOS, and the other
UTC sources are commercially available.

6.1.2 Global Positioning System

As a step toward actual clock synchronization problems, we first consider a
related problem, namely determining one's geographical position anywhere on
Earth. This positioning problem is by itself solved through a highly specific. dedi-
cated distributed system, namely GPS, which is an acronym for global posi-
tioning system. GPS is a satellite-based distributed system that was launched in
1978. Although it has been used mainly for military applications, in recent years it
has found its way to many civilian applications, notably for traffic navigation.
However, many more application domains exist. For example, GPS phones now
allow to let callers track each other's position, a feature which may show to be
extremely handy when you are lost or in trouble. This principle can easily be
applied to tracking other things as well, including pets, children, cars, boats, and
so on. An excellent overview of GPS is provided by Zogg (2002).

SEC. 6.1 CLOCK SYNCHRONIZATION 237

GPS uses 29 satellites each circulating in an orbit at a height of approximately
20,000 km. Each satellite has up to four atomic clocks, which are regularly cali-
brated from special stations on Earth. A satellite continuously broadcasts its posi-
tion, and time stamps each message with its local time. This broadcasting allows
every receiver on Earth to accurately compute its own position using, in principle,
only three satellites. To explain, let us first assume that all clocks, including the
receiver's, are synchronized.

- In order to compute a position, consider first the two-dimensional case, as
shown in Fig. 6-4, in which two satellites are drawn, along with the circles repres-
enting points at the same distance from each respective satellite. The y-axis
represents the height, while the x-axis represents a straight line along the Earth's
surface at sea level. Ignoring the highest point, we see that the intersection of the
two circles is a unique point (in this case, perhaps somewhere up a mountain).

Figure 6-4. Computing a position in a two-dimensional space.

This principle of intersecting circles can be expanded to three dimensions,
meaning that we need three satellites to determine the longitude, latitude, and alti-
tude of a receiver on Earth. This positioning is all fairly straightforward, but mat-
ters become complicated when we can no longer assume that all clocks are per-
fectly synchronized.

There are two important real-world facts that we need to take into account:

1. It takes a while before data on a satellite's position reaches the re-
cerver,

2. The receiver's clock is generally not in synch with that of a satellite.

Assume that the timestamp from a satellite is completely accurate. Let Ar denote
the deviation of the receiver's clock from the actual time. When a message is

238 SYNCHRONlZA nON CHAP. 6

where Xi,)'i. and Zi denote the coordinates of satellite i.What we see now is that if
we have four satellites, we get four equations in four unknowns, allowing us to
solve the coordinates Xp)'p and z, for the receiver, but also b.r. In other words, a
GPS measurement will also give an account of the actual time. Later in this
chapter we will return to determining positions following a similar approach.

So far, we have assumed that measurements are perfectly accurate. Of course,
they are not. For one thing, GPS does not take leap seconds into account. In other
words, there is a systematic deviation from UTe, which by January 1, 2006 is 14
seconds. Such an error can be easily compensated for in software. However, there
are many other sources of errors, starting with the fact that the atomic clocks in
the satellites are not always in perfect synch, the position of a satellite is not
known precisely, the receiver's clock has a finite accuracy, the signal propagation
speed is not constant (as signals slow down when entering, e.g., the ionosphere),
and so on. Moreover, we all know that the earth is not a perfect sphere, leading to
further corrections.

By and large, computing an accurate position is far from a trivial undertaking
and requires going down into many gory details. Nevertheless, even with rela-
tively cheap GPS receivers, positioning can be precise within a range of 1-5
meters. Moreover, professional receivers (which can easily be hooked up in a
computer network) have a claimed error of less than 20-35 nanoseconds. Again,
we refer to the excellent overview by Zogg (2002) as a first step toward getting
acquainted with the details.

6.1.3 Clock Synchronization Algorithms

If one machine has a WWV receiver, the goal becomes keeping all the other
machines synchronized to it. If no machines have WWV receivers, each machine
keeps track of its own time, and the goal is to keep all the machines together as
well as possible. Many algorithms have been proposed for doing this synchroniza-
tion. A survey is given in Ramanathan et a1.(1990).

received from satellite i with timestamp Ti, then the measured delay b.i by the re-
ceiver consists of two components: the actual delay, along with its own deviation:

As signals travel with the speed of light, c, the measured distance of the satellite is
clearly c b.i' With

being the real distance between the receiver and the satellite, the measured dis-
tance can be rewritten to d, + C b.r. The real distance is simply computed as:

SEC.6.1 CLOCKSYNCHRON~ATION 239

the timer can be said to be working within its specification. The constant p is
specified by the manufacturer and is known as the maximum drift rate. Note
that the maximum drift rate specifies to what extent a clock's skew is allowed to
fluctuate. Slow, perfect, and fast clocks are shown in Fig. 6-5.

All the algorithms have the same underlying model of the system. Each ma-
chine is assumed to have a timer that causes an interrupt H times a second. When
this timer goes off, the interrupt handler adds 1 to a software clock that keeps
track of the number of ticks (interrupts) since some agreed-upon time in the past.
Let us call the value of this clock C. More specifically, when the UTC time is t,
the value of the clock on machine p is CpU). In a perfect world, we would have
CpU)= t for all p and all t. In other words, C;U)=dCldt ideally should be 1.C;(t)
is called the frequency of p'» clock at time t. The skew of the clock is defined as
C;(t) - 1 and denotes the extent to which the frequency differs from that of a per-
fect clock. The offset relative to a specific time t is CpU) - t.

Real timers do not interrupt exactly H times a second. Theoretically, a timer
with H = 60 should generate 216,000 ticks per hour. In practice, the relative error
obtainable with modem timer chips is about 10-5, meaning that a particular ma-
chine can get a value in the range 215,998 to 216,002 ticks per hour. More pre-
cisely, if there exists some constant p such that

Figure 6-5. The relation between clock time and UTe when clocks tick at dif-
ferent rates.

If two clocks are drifting from UTC in the opposite direction, at a time dt
after they were synchronized, they may be as much as 2p & apart. If the operating
system designers want to guarantee that no two clocks ever differ by more than 0,
clocks must be resynchronized (in software) at least every 0/2p seconds. The var-
ious algorithms differ in precisely how this resynchronization is done.

240 SYNCHRONIZA nON CHAP. 6

Network Time Protocol

A common approach in many protocols and originally proposed by Cristian
(1989) is to let clients contact a time server. The latter can accurately provide the
current time, for example, because it is equipped with a WWV receiver or an
accurate clock. The problem, of course, is that when contacting the server, mes-
sage delays will have outdated the reported time. The trick is to find a good esti-
mation for these delays. Consider the situation sketched in Fig. 6-6.

Figure 6-6. Getting the current time from a time server.

Of course, time is not allowed to run backward. If A's clock is fast, e < 0, mean-
ing that A should. in principle, set its clock backward. This is not allowed as it
could cause serious problems such as an object file compiled just after the clock
change having a time earlier than the source which was modified just before the
clock change.

Such a change must be introduced gradually. One way is as follows. Suppose
that the timer is set to generate 100 interrupts per second. Normally, each interrupt
would add 10 msec to the time. When slowing down, the interrupt routine adds
only 9 msec each time until the correction has been made. Similarly, the clock can
be advanced gradually by adding 11 msec at each interrupt instead of jumping it
forward all at once.

In the case of the network time protocol (NTP), this protocol is set up pair- .
wise between servers. In other words, B will also probe A for its current time. The
offset e is computed as given above, along with the estimation 8 for the delay:

In this case, A will send a request to B, timestamped with value T i- B, in turn,
will record the time of receipt T2 (taken from its own local clock), and returns a
response timestamped with value T 3, and piggybacking the previously recorded
value T2. Finally, A records the time of the response's arrival, T4. Let us assume
that the propagation delays from A to B is roughly the same as B to A, meaning
that T2-T1 ::::T4-T3- In that case, A can estimate its offset relative to Bas

SEC. 6.1 CLOCK SYNCHRONIZATION 241

Eight pairs of (8,8) values are buffered, finally taking the minimal value found for
8 as the best estimation for the delay between the two servers, and subsequently
the associated value e as the most reliable estimation of the offset.

Applying NTP symmetrically should, in principle, also let B adjust its clock to
that of A. However, if B's clock is known to be more accurate, then such an
adjustment would be foolish. To solve this problem, NTP divides servers into
strata. A server with a reference clock such as a WWV receiver or an atomic
clock, is known to be a stratum-I server (the clock itself is said to operate at
stratum 0). When A contacts B, it will only adjust its time if its own stratum level
is higher than that of B ..Moreover, after the synchronization, A's stratum level
will become one higher than that of B. In other words, if B is a stratum-k server,
then A will become a stratum-(k+l) server if its original stratum level was already
larger than k. Due to the symmetry of NTP, if A's stratum level was lower than
that of B, B will adjust itself to A.

There are many important features about NTP, of which many relate to identi-
fying and masking errors, but also security attacks. NTP is described in Mills
(1992) and is known to achieve (worldwide) accuracy in the range of 1-50 msec.
The newest version (NTPv4) was initially documented only by means of its
implementation, but a detailed description can now be found in Mills (2006).

The Berkeley Algorithm

In many algorithms such as NTP, the time server is passive. Other machines
periodically ask it for the time. All it does is respond to their queries. In Berkeley
UNIX, exactly the opposite approach is taken (Gusella and Zatti, 1989). Here the
time server (actually, a time daemon) is active, polling every machine from time
to time to ask what time it is there. Based on the answers, it computes an average
time and tells all the other machines to advance their clocks to the new time or
slow their clocks down until some specified reduction has been achieved. This
method is suitable for a system in which no machine has a WWV receiver. The
time daemon's time must be set manually by the operator periodically. The meth-
od is illustrated in Fig. 6-7.

In Fig. 6-7(a), at 3:00, the time daemon tells the other machines its time and
asks for theirs. In Fig. 6-7(b), they respond with how far ahead or behind the time
daemon they are. Armed with these numbers, the time daemon computes the aver-
age and tells each machine how to adjust its clock [see Fig. 6-7(c)].

Note that for many purposes, it is sufficient that all machines agree on the
same time. It is not essential that this time also agrees with the real time as
announced on the radio every hour. If in our example of Fig. 6-7 the time
daemon's clock would never be manually calibrated, no harm is done provided

242 SYNCHRONIZA TION

An important advantage of more traditional distributed systems is that we can
easily and efficiently deploy time servers. Moreover, most machines can contact
each other, allowing for a relatively simple dissemination of information. These
assumptions are no longer valid in many wireless networks, notably sensor net-
works. Nodes are resource constrained, and multihop routing is expensive. In ad-
dition, it is often important to optimize algorithms for energy consumption. These
and other observations have led to the design of very different clock synchroniza-
tion algorithms for wireless networks. In the following, we consider one specific
solution. Sivrikaya and Yener (2004) provide a brief overview of other solutions.
An extensive survey can be found in Sundararaman et al. (2005).

Reference broadcast synchronization (RBS) is a clock synchronization pro-
tocol that is quite different from other proposals (Elson et al., 2002). First, the
protocol does not assume that there is a single node with an accurate account of
the actual time available. Instead of aiming to provide all nodes UTe time, it aims
at merely internally synchronizing the clocks, just as the Berkeley algorithm does.
Second, the solutions we have discussed so far are designed to bring the sender
and receiver into synch, essentially following a two-way protocol. RBS deviates
from this pattern by letting only the receivers synchronize, keeping the sender out
of the loop.

In RBS, a sender broadcasts a reference message that will allow its receivers
to adjust their clocks. A key observation is that in a sensor network the time to

CHAP. 6

Figure 6-7. (a) The time daemon asks all the other machines for their clock
values. (b) The machines answer. (c) The time daemon tells everyone how to

adjust their clock.

none of the other nodes communicates with external computers. Everyone will
just happily agree on a current time, without that value having any relation with

reality.

Clock Synchronization in Wireless Networks

243

propagate a signal to other nodes is roughly constant, provided no multi-hop rout-
ing is assumed. Propagation time in this case is measured from the moment that a
message leaves the network interface of the sender. As a consequence, two impor-
tant sources for variation in message transfer no longer play a role in estimating
delays: the time spent to construct a message, and the time spent to access the net-
work. This principle is shown in Fig. 6-8.

Figure 6-8. (a) The usual critical path in determining network delays. (b) The
critical path in the case of RBS.

Note that in protocols such as NTP, a timestamp is added to the message before it
is passed on the network interface. Furthermore, as wireless networks are based
on a contention protocol, there is generally no saying how long it will take before
a message can actually be transmitted. These factors of nondeterminism are elim-
inated in RBS. What remains is the delivery time at the receiver, but this time
varies considerably less than the network-access time.

The idea underlying RBS is simple: when a node broadcasts a reference mes-
sage m, each node p simply records the time Tp,m that it received m. Note that Tp.m
is read from p' s local clock. Ignoring clock skew, two nodes p and q can exchange
each other's delivery times in order to estimate their mutual, relative offset:

where M is the total number of reference messages sent. This information is im-
portant: node p will know the value of q's clock relative to its own value. More-
over, if it simply stores these offsets, there is no need to adjust its own clock,
which saves energy.

Unfortunately, clocks can drift apart. The effect is that simply computing the
average offset as done above will not work: the last values sent are simply less

CLOCKSYNCHRON~ATIONSEC. 6.1

244 SYNCHRONIZA TJON CHAP. 6

accurate than the first ones. Moreover, as time goes by, the offset will presumably
increase. Elson et al. use a very simple algorithm to compensate for this: instead
of computing an average they apply standard linear regression to compute the
offset as a function:

6.2 LOGICAL CLOCKS
So far, we have assumed that clock synchronization is naturally related to real

time. However, we have also seen that it may be sufficient that every node agrees
on a current time, without that time necessarily being the same as the real time.
We can go one step further. For running make, for example, it is adequate that two
nodes agree that input.o is outdated by a new version of input.c. In this case,
keeping track of each other's events (such as a producing a new version of
input.c) is what matters. For these algorithms, it is conventional to speak of the
clocks as logical clocks.

In a classic paper, Lamport (1978) showed that although clock synchroniza-
tion is possible, it need not be absolute. If two processes do not interact, it is not
necessary that their clocks be synchronized because the lack of synchronization
would not be observable and thus could not cause problems. Furthermore, he
pointed out that what usually matters is not that all processes agree on exactly
what time it is, but rather that they agree on the order in which events occur. In
the make example, what counts is whether input.c is older or newer than input.o,
not their absolute creation times.

In this section we will discuss Lamport's algorithm, which synchronizes logi-
cal clocks. Also, we discuss an extension to Lamport's approach, called vector
timestamps.

6.2.1 Lamport's Logical Clocks

To synchronize logical clocks, Lamport defined a relation called happens-be-
fore. The expression a ~ b is read "a happens before b" and means that all
processes agree that first event a occurs, then afterward, event b occurs. The
happens-before relation can be observed directly in two situations:

1. If a and b are events in the same process, and a occurs before b, then
a ~ b is true.

2. If a is the event of a message being sent by one process, and b is the
event of the message being received by another process, then a ~ b

The constants a and P are computed from the pairs (Tp,k,Tq,k). This new form 'will
allow a much more accurate computation of q's current clock value by node p,
and vice versa.

SEC. 6.2 LOGICAL CLOCKS 245

is also true. A message cannot be received before it is sent, or even at
the same time it is sent, since it takes a finite, nonzero amount of
time to arrive.

Happens-before is a transitive relation, so if a ~ band b ~ c, then a ~ c. If
two events, x and y, happen in different processes that do not exchange messages
(not even indirectly via third parties), then x ~ y is not true, but neither is y ~ x.
These events are said to be concurrent, which simply means that nothing can be
said (or need be said) about when the events happened or which event happened
first.

What we need is a way of measuring a notion of time such that for every
event, a, we can assign it a time value C (a) on which all processes agree. These
time values must have the property that if a ~ b, then C(a) < C(b). To rephrase
the conditions we stated earlier, if a and b are two events within the same process
and a occurs before b, then C(a) < C(b). Similarly, if a is the sending of a mes-
sage by one process and b is the reception of that message by another process,
then C (a) and C (b) must be assigned in such a way that everyone agrees on the
values of C (a) and C (b) with C (a) < C (b). In addition, the clock time, C, must
always go forward (increasing), never backward (decreasing). Corrections to time
can be made by adding a positive value, never by subtracting one.

Now let us look at the algorithm Lamport proposed for assigning times to
events. Consider the three processes depicted in Fig. 6-9(a). The processes run on
different machines, each with its own clock, running at its own speed. As can be
seen from the figure, when the clock has ticked 6 times in process PI, it has ticked
8 times in process Pz and 10 times in process P3' Each clock runs at a constant
rate, but the rates are different due to differences in the crystals.

Figure 6-9. (a) Three processes, each with its own clock. The clocks run at dif-
ferent rates. (b) Lamport's algorithm corrects the clocks.

246 SYNCHRONIZA TlON CHAP. 6

At time 6, process P, sends message 111 I to process P2• How long this mes-
sage takes to arrive depends on whose clock you believe. In any event, the clock
in process P2 reads 16 when it arrives. If the message carries the starting time, 6,
in it, process P2 will conclude that it took 10 ticks to make the journey. This value
is certainly possible. According to this reasoning, message m 2 from P2 to R takes
16 ticks, again a plausible value.
Now consider message m 3- It leaves process P3 at 60 and arrives at P2 at '56.

Similarly, message m4 from P2 to PI leaves at 64 and arrives at 54. These values
are clearly impossible. It is this situation that must be prevented.

Lamport's solution follows directly from the happens-before relation. Since
m 3 left at 60, it must arrive at 61 or later. Therefore, each message carries the
sending time according to the sender's clock. When a message arrives and the re-
ceiver's clock shows a value prior to the time the message was sent, the receiver
fast forwards its clock to be one more than the sending time. In Fig. 6-9(b) we see
that 1113 now arrives at 61. Similarly, m4 arrives at 70.

To prepare for our discussion on vector clocks, let us formulate this procedure
more precisely. At this point, it is important to distinguish three different layers of
software as we already encountered in Chap. 1: the network, a middleware layer,
and an application layer, as shown in Fig. 6-10. What follows is typically part of
the middleware layer.

Figure 6-10. The positioning of Lamport's logical clocks in distributed systems.

To implement Lamport's logical clocks, each process Pi maintains a local counter
G. These counters are updated as follows steps (Raynal and Singhal, 1996):

1. Before executing an event (i.e., sending a message over the network,
delivering a message to an application, or some other internal event),
Pi executes G f- G + 1.

2. When process Pi sends a message m to Pj' it sets 11l'S timestamp
ts (m) equal to G after having executed the previous step.

SEC. 6.2 LOGICAL CLOCKS 247

3. Upon the receipt of a message m, process lj adjusts its own local
counter as 0 f- max{0, ts (m) }, after which it then executes the
first step and delivers the message to the application.

In some situations, an additional requirement is desirable: no two events ever
occur at exactly the same time. To achieve this goal, we can attach the number of
the process in which the event occurs to the low-order end of the time, separated
by a decimal point. For example, an event at time 40 at process Pi will be time-
stamped with 40.i.

Note that by assigning the event time C(a) f- q(a) if a happened at process
Pi at time q(a), we have a distributed implementation of the global time value we
were initially seeking for.

Example: Totally Ordered Multicasting

As an application of Lamport's logical clocks, consider the situation in which
a database has been replicated across several sites. For' example, to improve query
performance, a bank may place copies of an account database in two different
cities, say New York and San Francisco. A query is always forwarded to the
nearest copy. The price for a fast response to a query is partly paid in higher
update costs, because each update operation must be carried out at each replica.

In fact, there is a more stringent requirement with respect to updates. Assume
a customer in San Francisco wants to add $100 to his account, which currently
contains $1,000. At the same time, a bank employee in New York initiates an
update by which the customer's account is to be increased with 1 percent interest.
Both updates should be carried out at both copies of the database. However, due
to communication delays in the underlying network, the updates may arrive in the
order as shown in Fig. 6-11.

Figure 6-11. Updating a replicated database and leaving it in an inconsistent
state.

The customer's update operation is performed in San Francisco before the
interest update. In contrast, the copy of the account in the New York replica is

248 SYNCHRONIZA nON CHAP. 6

first updated with the 1 percent interest, and after that with the $100 deposit. Con-
sequently, the San Francisco database will record a total amount of $1,] 11,
whereas the New York database records $1,110.

The problem that we are faced with is that the two update operations should
have been performed in the same order at each copy. Although it makes a differ-
ence whether the deposit is processed before the interest update or the other, way
around, which order is followed is not important from a consistency point of view.
The important issue is that both copies should be exactly the same. In general,
situations such as these require a totally-ordered multicast, that is, a multicast
operation by which all messages are delivered in the same order to each recei ver.
Lamport's logical clocks can be used to implement totally-ordered multi casts in a
completely distributed fashion.

Consider a group of processes multicasting messages to each other. Each mes-
sage is always timestamped with the current (logical) time of its sender. When a
message is multicast, it is conceptually also sent to the sender. In addition, we
assume that messages from the same sender are received in the order they were
sent, and that no messages are lost.

When a process receives a message, it is put into a local queue, ordered ac-
cording to its timestamp. The receiver multicasts an acknowledgment to the other
processes. Note that if we follow Lamport's algorithm for adjusting local clocks,
the timestamp of the received message is lower than the timestamp of the ack-
nowledgment. The interesting aspect of this approach is that all processes will
eventually have the same copy of the local queue (provided no messages are re-
moved).

A process can deliver a queued message to the application it is running only
when that message is at the head of the queue and has been acknowledged by each
other process. At that point, the message is removed from the queue and handed
over to the application; the associated acknowledgments can simply be removed.
Because each process has the same copy of the queue, all messages are delivered
in the same order everywhere. In other words, we have established totally-ordered
multicasting.

As we shall see in later chapters. totally-ordered multicasting is an important
vehicle for replicated services where the replicas are kept consistent by letting
them execute the same operations in the same order everywhere. As the replicas
essentially follow the same transitions in the same finite state machine, it is also
known as state machine replication (Schneider, 1990).

6.2.2 Vector Clocks

Lamport's logical clocks lead to a situation where all events in a distributed
system are totally ordered with the property that if event a happened before event
b, then a will also be positioned in that ordering before b, that is, C (a) < C (b).

SEC. 6.2 LOGICAL CLOCKS 249

However, with Lamport clocks, nothing can be said about the relationship be-
tween two events a and b by merely comparing their time values C(a) and C(b),
respectively. In other words, if C(a) < C(b), then this does not necessarily imply
that a indeed happened before b. Something more is needed for that.

To explain, consider the messages as sent by the three processes shown in
Fig. 6-12. Denote by I'snd(mi) the logical time at which message m, was sent, and
likewise, by T,.cv (mi) the time of its receipt. By construction, we know that for
each message I'snd(mi) < T,.cy(mi). But what can we conclude in general from
T,.cv(mi) < I'snd(mj)?

Figure 6-12. Concurrent message transmission using logical clocks.

In the case for which mi=m 1 and mj=m 3, we know that these values
correspond to events that took place at process Pz, meaning that m-; was indeed
sent after the receipt of message mi. This may indicate that the sending of mes-
sage m-; depended on what was received through message mi. However, we also
know that T,.CY(m 1) <I'snd (m z). However, the sending of m z has nothing to do
with the receipt of mi.

The problem is that Lamport clocks do not capture causality. Causality can
be captured by means of vector clocks. A vector clock VC (a) assigned to an
event a has the property that if VC (a) < VC (b) for some event b, then event a is
known to causally precede event b. Vector clocks are constructed by letting each
process P, maintain a vector VCi with the following two properties:

1. VCj [i] is the number of events that have occurred so far at Pi. In
other words, VCj [i] is the local logical clock at process Pi.

2. If VCj U] = k then Pi knows that k events have occurred at Pj. It is
thus Pi'S knowledge of the local time at Pj.

The first property is maintained by incrementing VCj [i] at the occurrence of each
new event that happens at process Pi. The second property is maintained by

250 SYNCHRONIZATION CHAP. 6

piggybacking vectors along with messages that are sent. In particular, the follow-
ing steps are performed:

1. Before executing an event (i.e., sending a message over the network,
delivering a message to an application, or some other internal event),
Pi executes VCj [I] ~ VCj [i] + 1.

2. When process Pi sends a message m to lj, it sets m's (vector) time-
stamp ts (m) equal to VCj after having executed the previous step.

3. Upon the receipt of a message m, process lj adjusts its own vector by
setting VCj [k] ~ max {VCj [k], ts (m)[k]} for each k, after which it
executes the first step and delivers the message to the application.

Note that if an event a has timestamp ts (a), then ts (a)[I]-1 denotes the number
of events processed at P; that causally precede a. As a consequence, when lj
receives a message from Pi with timestamp ts (m), it knows about the number of
events that have occurred at Pi that causally preceded the sending of m. More im-
portant, however, is that lj is also told how many events at other processes have
taken place before Pi sent message m. In other words, timestamp ts (m) tells the
receiver how many events in other processes have preceded the sending of m, and
on which m may causally depend.

Enforcing Causal Communication

Using vector clocks, it is now possible to ensure that a message is delivered
only if all messages that causally precede it have also been received as well. To
enable such a scheme, we will assume that messages are multicast within a group
of processes. Note that this causally-ordered multicasting is weaker than the
totally-ordered multicasting we discussed earlier. Specifically, if two messages
are not in any way related to each other, we do not care in which order they are
delivered to applications. They may even be delivered in different order at differ-
ent locations.

Furthermore, we assume that clocks are only adjusted when sending and
receiving messages. In particular, upon sending a message, process P; will only
increment VCj [i] by 1. When it receives a message m with timestamp ts (m), it
only adjusts VCj [k] to max {VCj [k], ts (111)[k]} for each k.

Now suppose that lj receives a message m from Pi with (vector) timestamp
ts (m). The delivery of the message to the application layer will then be delayed
until the following two conditions are met:

SEC. 6.2 LOGICAL CLOCKS 251

The first condition states that m is the next message that lj was expecting from
process Pi' The second condition states that lj has seen all the messages that have
been seen by Pi when it sent message m. Note that there is no need for process Pj
to delay the delivery of its own messages.

As an example, consider three processes Po, Pb and P2 as shown in Fig. 6-
13. At local time (1,0,0), PI sends message m to the other two processes. After
its receipt by PI, the latter decides to send m», which arrives at P2 sooner than m.

At that point, the delivery of m» is delayed by P2 until m has been received and
delivered to P2's application layer.

Figure 6-13. Enforcing causal communication.

A Note on Ordered Message Delivery

Some middleware systems, notably ISIS and its successor Horus (Birman and
van Renesse, 1994), provide support for totally-ordered and causally-ordered (reli-
able) multicasting. There has been some controversy whether such support should
be provided as part of the message-communication layer, or whether applications
should handle ordering (see, e.g., Cheriton and Skeen, 1993; and Birman, 1994).
Matters have not been settled, but more important is that the arguments still hold
today.

There are two main problems with letting the middle ware deal with message
ordering. First, because the middle ware cannot tell what a message actually con-
tains, only potential causality is captured. For example, two messages from the
same sender that are completely independent will always be marked as causally
related by the middleware layer. This approach is overly restrictive and may lead
to efficiency problems.

A second problem is that not all causality may be captured. Consider an elec-
tronic bulletin board. Suppose Alice posts an article. If she then phones Bob tel-
ling about what she just wrote, Bob may post another article as a reaction without
having seen Alice's posting on the board. In other words, there is a causality be-
tween Bob's posting and that of Alice due to external communication. This
causality is not captured by the bulletin board system.

252 SYNCHRONIZA nON CHAP. 6

In essence, ordering issues, like many other application-specific communica-
tion issues, can be adequately solved by looking at the application for which com-
munication is taking place. This is also known as the end-to-end argument in
systems design (Saltzer et aI., 1984). A drawback of having only application-
level solutions is that a developer is forced to concentrate on issues that do not im-
mediately relate to the core functionality of the application. For example, ordering
may not be the most important problem when developing a messaging system
such as an electronic bulletin board. In that case, having an underlying communi-
cation layer handle ordering may tum out to be convenient. We will come across
the end-to-end argument a number of times, notably when dealing with security in
distributed systems.

6.3 MUTUAL EXCLUSION

Fundamental to distributed systems is the concurrency and collaboration
among multiple processes. In many cases, this also means that processes will need
to simultaneously access the same resources. To prevent that such concurrent ac-
cesses corrupt the resource, or make it inconsistent, solutions are needed to grant
mutual exclusive access by processes. In this section, we take a look at some of
the more important distributed algorithms that have been proposed. A recent sur-
vey of distributed algorithms for mutual exclusion is provided by Saxena and Rai
(2003). Older, but still relevant is Velazquez (1993).

6.3.1 Overview

Distributed mutual exclusion algorithms can be classified into two different
categories. In token-based solutions mutual exclusion is achieved by passing a
special message between the processes, known as a token. There is only one
token available and who ever has that token is allowed to access the shared re-
source. When finished, the token is passed on to a next process. If a process hav-
ing the token is not interested in accessing the resource, it simply passes it on.

Token-based solutions have a few important properties. First, depending on
the how the processes are organized, they can fairly easily ensure that every proc-
ess will get a chance at accessing the resource. In other words, they avoid starva-
tion. Second, deadlocks by which several processes are waiting for each other to
proceed, can easily be avoided, contributing to their simplicity. Unfortunately, the
main drawback of token-based solutions is a rather serious one: when the token is
lost (e.g., because the process holding it crashed), an intricate distributed proce-
dure needs to be started to ensure that a new token is created, but above all, that it
is also the only token.

As an alternative, many distributed mutual exclusion algorithms follow a
permission-based approach. In this case. a process wanting to access the re-

