
Clocks in Distributed Systems

Needed to
Order two or more events happening at same or different
nodes (Ex: Consistent ordering of updates at different
replicas, ordering of multicast messages sent in a group)
Decide if two events happened between some fixed
duration of each other (Ex: Replay of stolen messages in
distributed authentication protocols like Kerberos)
Start events at different nodes together at the same time
(Ex: tracking in sensor networks, sleep/wakeup
scheduling)

Easy if a globally synchronized clock is available, but
Perfectly synchronized clocks are impossible to achieve
But perfect synchronization may not be needed always;
synchronization within bounds may be enough

Degree of synchronization needed depends on application
Kerberos requires synchronization of the order of minutes
Tracking applications may require synchronization of the order of
seconds

Still not sufficient for ordering events always
Suppose each node timestamps events at the node by its local
clock

May not be able to order events whose timestamps differ by

Two approaches for building clocks
Physical Clocks

Each machine has its own local clock
Clock synchronization algorithms run periodically to keep
them synchronized with each other within some bounds
Useful for giving a consistent view of “current time” across all
nodes within some bounds, but cannot order events always

Logical Clocks
Use the notion of causality to order events
Can what happened in one event affect what happens in
another?

Because if not, ordering them is not important
Useful for ordering events, but not for giving a consistent
view of “current time” across all nodes

Physical Clocks

Physical Clocks

Each node has a local clock used by it to timestamp
events at the node
Local clocks of different nodes may vary
Need to keep them synchronized (Clock Synchronization
Problem)
Perfect synchronization not possible because of inability
to estimate network delays exactly

Clock Synchronization

Internal Synchronization
Requires the clocks of the nodes to be synchronized to
within a pre-specified bound
However, the clock times may not be synchronized to any
external time reference, and can vary arbitrarily from any
such reference

External Synchronization
Requires the clocks to be synchronized to within a pre-
specified bound of an external reference clock

How Computer Clocks Work

Computer clocks are based on crystals that oscillate at a
certain frequency
Every H oscillations, the timer chip interrupts once
(clock tick)

Resolution: time between two interrupts
The interrupt handler increments a counter that keeps
track of no. of ticks from a reference in the past (epoch)
Knowing no. of ticks per second, we can calculate year,
month, day, time of day etc.

Why Clocks Differ: Clock Drift
Period of crystal oscillation varies slightly due to
temperature, humidity, ageing,…
If it oscillates faster, more ticks per real second, so clock
runs faster; similar for slower clocks
For machine p, when correct reference time is t, let
machine clock show time as C = Cp(t)
Ideally, Cp(t) = t for all p, t
In practice, 1 –

 = max. clock drift rate, usually around 10-5 for cheap
oscillators
Drift results in skew between clocks (difference in clock
values of two machines)

Resynchronization

Periodic resynchronization needed to offset skew
If two clocks are drifting in opposite directions, max.
skew after time t is 2 t
If application requires that clock skew < , then
resynchronization period

 r < /(2)
Usually and are known

 given by crystal manufacturer
 specified from application requirement

Cristian’s Algorithm

One node acts as the time server
All other nodes sends a message periodically (within
resync. period r) to the time server asking for current
time
Time server replies with its time to the client node
Client node sets its clock to the reply
Problems:

How to estimate the delay incurred by the server’s reply
in reaching the client?
What if time server time is less than client’s current time?

Handling message delay: try to estimate the time the
message with the timer server’s time took to reach the
client

Measure round trip time and halve it
Make multiple measurements of round trip time, discard
too high values, take average of rest
Make multiple measurements and take minimum
Use knowledge of processing time at server if known to
eliminate it from delay estimation (How to know?)

Handling fast clocks
Do not set clock backwards; slow it down over a period of
time to bring in tune with server’s clock

Ex: increase the software clock every two interrupts instead
of one

Can be used for external synchronization if the time
server is synchronized with external clock reference

Requires a special node with a time source
What if the time server fails?

Usually a problem, as it is assumed that the time server is
special (synchronized with external clock or at least with a
more reliable clock)

Works well in small LANs, not scalable to large number
of nodes over WANs

Load on the central server will be high, affecting its
processing time, in turn affecting synchronization error
Delay variance increases in larger networks

Berkeley Algorithm
Centralized as in Cristian’s, but the time server is active
Time server asks for time of other nodes at periodic
intervals
Other nodes reply with their time
Time server averages the times and sends the
adjustments (difference from local clock) needed to each
machine

Adjustments may be different for different machines
Why do we send adjustments, and not the new absolute clock
value?

Nodes sets their time (advances immediately or slows
down slowly) to the new time

Time server can handle faulty clocks by eliminating
client clock values that are too low or too high
What if the time server fails?

Just elect another node as the time server (Leader Election
Problem)
Note that the actual time of the central server does not
matter, enough for it to tick at around the same rate as
other clocks to compute average correctly (why?)

Cannot be used for external synchronization
Works well in small LANs only for the same reason as
Cristian’s

External Synchronization with Real
Time

Clocks must be synchronized with real time
But what is “real time” anyway?

Measurement of Time

Astronomical Time
Traditionally used
Based on earth’s rotation around its axis and around the
sun
Solar day : interval between two consecutive transits of the
sun
Solar second : 1/86,400 of a solar day
Period of earth’s rotation varies, so solar second is not
stable
Mean solar second : average length of large no of solar
days, then divide by 86,400

Atomic Time
Based on the transitions of Cesium 133 atom
1 sec. = time for 9,192,631,770 transitions
Many labs worldwide maintain a network of atomic clocks
International Atomic Time (TAI) : mean no. of ticks of the
clocks since Jan 1, 1958
Highly stable
But slightly off-sync with mean solar day (since solar day is
getting longer)
A leap second inserted occasionally to bring it in sync.
Resulting clock is called UTC – Universal Coordinated
Time

UTC time is broadcast from different sources around the
world, ex.

National Institute of Standards & Technology (NIST) – runs
WWV radio station, anyone with a proper receiver can
tune in
United States Naval Observatory (USNO) – supplies time
to all defense sources
National Physical Laboratory in UK
Satellites
Many others
Accuracies can vary (< 1 milliseconds to a few
milliseconds)

Synchronizing with UTC Time

Put an atomic clock in each node!!
Too costly
Most often the accuracy is not needed, so the cost is not
worth it

Put a GPS receiver at each node
Still costly
GPS does not work well indoor

Can use a Cristian-like algorithm with the time server
sync’ed to a UTC source

Not scalable for internet-scale synchronization
Solution: Use a hierarchical approach

NTP : Network Time Protocol

Protocol for time synchronization in the internet
Hierarchical architecture

Stratum 0: reference clocks (atomic clocks or receivers for
time broadcast by national time standards or satellites, ex.
GPS)
Stratum 1: primary servers with reference clocks

Most accurate
Stratum 2, 3,… servers synchronize to primary servers in a
hierarchical manner (stratum 2 servers sync. with stratum 1,
stratum 3 with stratum 2 etc.)

Lower stratum no. means more accurate
More servers at higher stratum no.

Different communication modes
Multicast (usually within LAN servers)

One or more servers periodically multicasts their time to other servers
Symmetric (usually within multiple geographically close servers)

Two servers directly exchange timing information
Client server (to higher stratum servers)

Cristian-like algorithm

Communicates over UDP
Reliability ensured by synchronizing with redundant servers
Accuracy ensured by combining and filtering multiple time
values from multiple servers
Sync. possible to within tens of milliseconds for most machines

But just a best-effort service, no guarantees

