Global State Recording

Global State Collection

Applications:

 Checking "stable" properties, checkpoint & recovery

Issues:

- Need to capture both node and channel states
- system cannot be stopped
- no global clock

Notations

Some notations:

- Local state of process i
- send(m_{ij}): Send event of message m_{ij} from process i to process j
- rec(m_{ij}): Similar, receive instead of send
- time(x): Time at which state x was recorded
- time (send(m)) : Time at which send(m) occurred

Definitions

- send(m_{ij}) ∈ LS_i iff time(send(m_{ij})) < time(LS_i)
- $rec(m_{ij}) \in LS_j$ iff $time(rec(m_{ij})) < time(LS_j)$
- transit(LS_i, LS_j)
 = { m_{ij} | send(m_{ij}) ∈ LS_i and rec(m_{ij}) ∉ LS_j }
- inconsistent(LS_i, LS_j)
 = { m_{ij} | send(m_{ij}) ∉ LS_i and rec(m_{ij}) ∈ LS_j }

Definitions

Global state: collection of local states

GS is consistent iff

for all i, j,
$$1 \le i$$
, $j \le n$, inconsistent(LSi, LSj) = Φ

• GS is transitless iff

for all i, j,
$$1 \le i$$
, $j \le n$,
transit(LSi, LSj) = Φ

• GS is strongly consistent if it is consistent and transitless.

Chandy-Lamport's Algorithm

- Uses special marker messages.
- One process acts as initiator, starts the state collection by following the marker sending rule below.
- Marker sending rule for process P:
 - P records its state and
 - For each outgoing channel C from P on which a marker has not been sent already, P sends a marker along C before any further message is sent on C

Chandy Lamport's Algorithm contd...

- When Q receives a marker along a channel C:
 - If Q has not recorded its state then Q records the state of C as empty; Q then follows the marker sending rule
 - If Q has already recorded its state, it records the state of C as the sequence of messages received along C after Q's state was recorded and before Q received the marker along C

Notable Points

- Markers sent on a channel distinguish messages sent on the channel before the sender recorded its states and the messages sent after the sender recorded its state
- The state collected may not be any state that actually happened in reality, rather a state that "could have" happened
- Requires FIFO channels
- Message complexity O(|E|), where E = no. of links