Logical Clocks and Causal Ordering

Why do we need global clocks?

* For causally ordering events in a distributed system
— Example:
* Transaction T transfers Rs 10,000 from S1 to S2

* Consider the situation when:

— State of S1 is recorded after the deduction and state of
S2 is recorded before the addition

— State of S1 is recorded before the deduction and state
of S2 is recorded after the addition

Should not be confused with the clock-synchronization problem

1 | - What data is being transmitted? 0101?

| | | | | Yes, if this is the clock
I | I | I | I | I | I | I | I | If this is the clock, then 01110001

The receiver needs to know the clock of the sender

Ordering of Events

Lamport’s Happened Before relationship:

For two eventsaand b, a - b if

" gand b are events in the same process and a occurred before b, or

" qgisasendevent of a message m and b is the corresponding receive
event at the destination process, or

" g ->candc - b forsome event c

Causally Related versus Concurrent

Causally related events:

Event a causally affects eventbifa — b

Concurrent events:

* Two distinct events a and b are said to be concurrent (denoted by a| | b)) if

a-pbandbpHa

e11 el2 el13 el4
P1 ~ ~ ~ ~ e11 and e21 are concurrent
e14 and e23 are concurrent
P2 O O O O e22 causally affects e14

e21 e22 e23 e24

A space-time diagram

Lamport’s Logical Clock

Each process i keeps a clock C;

* Eacheventainiistime-stamped C(a), the value of C; when a occurred

e Cjisincremented by 1 for each eventin i

e In addition, if a is a send of message m from process i to j, then on receive of
m,

Cj = max (Cj, C(a)+1)

How Lamport’s clocks advance

e12 e13 e14 e15 e16 e17

1

(2) (3) (4) (5) (6) (7)
(1) 2) (3) (7)
21 922 923 e e25

24

e1

U

)
e

Points to note

e ifa—>Db,then C(a) < C(b)
e - isapartial order

e Total ordering possible by arbitrarily ordering concurrent events by process
numbers:
* Ifaisany eventin process P, and b is any event in process P;then a => b if and only if
Ci(a) < Ci(b) o,
Ci(a) = G(b) and P; < P; where <is an arbitrary relation that totally orders the

processes to break ties. A simple way to implement < is to assign unique
identification numbers to each process and then

P,<Pifi<j

Limitation of Lamport’s Clock

a—> b implies C(a) < C(b)
BUT

C(a) < C(b) doesn’t implya > b !!

So not a true clock ”

Solution: Vector Clocks

Each process P, has a clock C, which is a vector of size n
The clock C, assigns a vector C,(a) to any event a at P,

Update rules:

J Ci[i]++ for every event at process i

e Ifais send of message m from i to j with vector timestamp t,,, then on receipt
of m:

Cj[k] = max(Cj[K], tm[k]) for all k

Partial Order between Timestamps

For events a and b with vector timestamps t? and t®,

. Equal: =2 iff Vi, 2] = O[]

e Not Equal: B 2t® i3,) 2 O

e Lessorequal: 9 < tb iff Vi, ta[i] < tb[i]

e Not less or equal: 9 < tb | iff i, ta[i] > tb[i]

e Lessthan: 9 < tb iff (ta < tIO and t@ # tb)

e Not less than: 9 < tb | iff —|(ta < tb and t2 # tb)
e Concurrent: 2 | | tb iff (ta |<tb and tb |< ta)

Causal Ordering

e a—>biffta<ty

 Events a and b are causally related iff t; < tp or tp < t,, else they are
concurrent

* Note that this is still not a total order

Use of Vector Clocks in Causal Ordering of Messages

* If send(m1) - send(m2), then every recipient of both message m1 and m2
must “deliver” m1 before m2.

— “deliver” — when the message is actually given to the application for
processing

Problem of Vector Clock

Message size increases since each message needs to be tagged with the
vector

Size can be reduced in some cases by only sending values that have
changed

