
Distributed Mutual Exclusion



Mutual Exclusion

• Very well-understood in shared memory systems

• Requirements:

– at most one process in critical section (safety)– at most one process in critical section (safety)

– if more than one requesting process, someone enters 

(liveness)

– a requesting process enters within a finite time (no 

starvation)

– requests are granted in order (fairness)



Types of Dist. Mutual Exclusion Algorithms

• Non-token based / Permission based

– Permission from all processes: e.g. Lamport, 

Ricart-Agarwala, Raicourol-Carvalho etc.

– Permission from a subset: ex. Maekawa

• Token based ex. Suzuki-Kasami

– Single token in the system

– Node enters critical section if it has the token

– Algorithms differ in how the token is 

circulated



Some Complexity Measures

• No. of messages/critical section entry

• Synchronization delay

• Response time• Response time

• Throughput



Lamport’s Algorithm

• Every node i has a request queue qi
– keeps requests sorted by logical timestamps (total ordering 

enforced by including process id in the timestamps) 

• To request critical section:• To request critical section:
– send timestamped REQUEST(tsi, i) to all other nodes

– put (tsi, i) in its own queue

• On receiving a request (tsi, i):
– send timestamped REPLY to the requesting node i 

– put request (tsi, i) in the queue



Lamport’s Algorithm contd..

• To enter critical section:
– Process i enters critical section if:

• (tsi, i) is at the top if its own queue, and 

• Process i has received a message (any message) with • Process i has received a message (any message) with 
timestamp larger than (tsi, i) from ALL other nodes.

• To release critical section:
• Process i removes its request from its own queue and sends 

a timestamped RELEASE message to all other nodes

• On receiving a RELEASE message from i, i’s request is 
removed from the local request queue



Some notable points

• Purpose of REPLY messages from node i to j is to ensure that j knows of all 

requests of i prior to sending the REPLY (and therefore, possibly any 

request of i with timestamp lower than j’s request)

• Requires FIFO channels. • Requires FIFO channels. 

• 3(n – 1 ) messages per critical section invocation

• Synchronization delay = max mesg transmission time

• Requests are granted in order of increasing timestamps



The Ricart-Agrawala Algorithm
• Improvement over Lamport’s

• Main Idea:

– node j need not send a REPLY to node i if j has a 

request with timestamp lower than the request 

of i (since i cannot enter before j anyway in this of i (since i cannot enter before j anyway in this 

case)

• Does not require FIFO

• 2(n – 1) messages per critical section invocation

• Synchronization delay = max. message transmission time

• Requests granted in order of increasing timestamps



The Ricart-Agrawala Algorithm

• To request critical section:

– send timestamped REQUEST message (tsi, i)

• On receiving request (tsi, i) at j:
– send REPLY to i if j is neither requesting nor executing critical section or 

– if j is requesting and i’s request timestamp is smaller than j’s request – if j is requesting and i’s request timestamp is smaller than j’s request 

timestamp. Otherwise, defer the request.

• To enter critical section:

– i enters critical section on receiving REPLY from all nodes

• To release critical section:

– send REPLY to all deferred requests



Roucairol-Carvalho Algorithm

• Improvement over Ricart-Agarwala

• Main idea• Main idea

– Once i has received a REPLY from j, it does not 

need to send a REQUEST to j again unless it sends 

a REPLY to j (in response to a REQUEST from j)

– Message complexity varies between 0 and 2(n – 1) 

depending on the request pattern

– worst case message complexity still the same


