
Process Synchronization and Semaphores
Week 9

SDB

Autumn 2025

SDB OS 1 / 24

Agenda: Process Synchronization with Semaphores

Ensuring Order and Consistency in Concurrent Execution

1 Race Conditions and Critical Section Problem (The core challenge)

2 Requirements for Mutual Exclusion (What makes a solution correct?)

3 Semaphores: Types and Operations (A powerful synchronization tool)

4 Classic Use Case: Producer–Consumer Problem (Applying semaphores
to a common pattern)

5 Pitfalls in Semaphore Usage (What can go wrong?)

Think Ahead: Data Integrity in Parallel

When multiple threads or processes operate on shared data concurrently, un-
expected and incorrect results can emerge. How can we design our code to
ensure that critical operations on shared resources are performed atomically
and correctly, preventing data corruption and maintaining system integrity?

SDB OS 2 / 24

Agenda: Process Synchronization with Semaphores

Ensuring Order and Consistency in Concurrent Execution

1 Race Conditions and Critical Section Problem (The core challenge)

2 Requirements for Mutual Exclusion (What makes a solution correct?)

3 Semaphores: Types and Operations (A powerful synchronization tool)

4 Classic Use Case: Producer–Consumer Problem (Applying semaphores
to a common pattern)

5 Pitfalls in Semaphore Usage (What can go wrong?)

Think Ahead: Data Integrity in Parallel

When multiple threads or processes operate on shared data concurrently, un-
expected and incorrect results can emerge. How can we design our code to
ensure that critical operations on shared resources are performed atomically
and correctly, preventing data corruption and maintaining system integrity?

SDB OS 2 / 24

Race Conditions: The Danger of Concurrent Access
Definition:

A race condition occurs when two or more processes or threads concurrently
access and manipulate shared data, and the outcome of the execution depends on
the particular order in which the accesses take place (i.e., the relative timing of
events).

Common Example: Incrementing a Shared Counter

Consider a shared integer variable ‘count‘ initialized to 0.

Two threads, T1 and T2, both want to increment ‘count‘ by 1.

The operation ‘count++‘ is not atomic; it typically involves three machine
instructions:

1 Load ‘count‘ from memory into a register.
2 Increment the register.
3 Store the register’s value back to ‘count‘ in memory.

Result: Without proper synchronization, the final value of ‘count‘ might be 1
instead of the expected 2.

SDB OS 3 / 24

Race Conditions: The Danger of Concurrent Access
Definition:

A race condition occurs when two or more processes or threads concurrently
access and manipulate shared data, and the outcome of the execution depends on
the particular order in which the accesses take place (i.e., the relative timing of
events).

Common Example: Incrementing a Shared Counter

Consider a shared integer variable ‘count‘ initialized to 0.

Two threads, T1 and T2, both want to increment ‘count‘ by 1.

The operation ‘count++‘ is not atomic; it typically involves three machine
instructions:

1 Load ‘count‘ from memory into a register.
2 Increment the register.
3 Store the register’s value back to ‘count‘ in memory.

Result: Without proper synchronization, the final value of ‘count‘ might be 1
instead of the expected 2.

SDB OS 3 / 24

Race Conditions: The Danger of Concurrent Access
Definition:

A race condition occurs when two or more processes or threads concurrently
access and manipulate shared data, and the outcome of the execution depends on
the particular order in which the accesses take place (i.e., the relative timing of
events).

Common Example: Incrementing a Shared Counter

Consider a shared integer variable ‘count‘ initialized to 0.

Two threads, T1 and T2, both want to increment ‘count‘ by 1.

The operation ‘count++‘ is not atomic; it typically involves three machine
instructions:

1 Load ‘count‘ from memory into a register.
2 Increment the register.
3 Store the register’s value back to ‘count‘ in memory.

Result: Without proper synchronization, the final value of ‘count‘ might be 1
instead of the expected 2.

SDB OS 3 / 24

Race Condition Example: Interleaved Execution I
Scenario: ‘count++‘ with Two Threads

Initial ‘count = 0‘

Thread 1 wants ‘count++‘

Thread 2 wants ‘count++‘

Expected Final ‘count‘: 2

Problematic Interleaving (Race Condition):

Time Thread 1 Action Thread 2 Action
t0 Load ‘count‘ (0) into R1
t1 Load ‘count‘ (0) into R2
t2 Increment R1 (R1 becomes 1)
t3 Increment R2 (R2 becomes 1)
t4 Store R1 (1) into ‘count‘
t5 Store R2 (1) into ‘count‘

Final

‘count‘ = 1 (Incorrect!) Both threads read the old value (0) before either could

write back the incremented value. One update is lost.

SDB OS 4 / 24

Race Condition Example: Interleaved Execution II

Analogy: Concurrent Bank Deposits

Imagine two people trying to deposit money into the same bank account
at the same time. If both read the current balance, add their deposit, and
then write the new balance back without coordinating, one deposit might
be lost.

SDB OS 5 / 24

The Critical Section Problem I

Critical Section:

A critical section is a segment of code where a process or thread accesses shared
resources (data, files, devices). Only one process/thread should be allowed to
execute its critical section at any given time to prevent race conditions.

Goal: Design a protocol that processes can use to cooperate such that no two
processes are in their critical sections simultaneously. A Solution to the Critical

Section Problem Must Satisfy Three Requirements:

1 Mutual Exclusion:

▶ Requirement: If process Pi is executing in its critical section, then no
other process can be executing in its critical section.

▶ Why it’s needed: This is the core requirement to prevent race
conditions and ensure data integrity.

2 Progress:

SDB OS 6 / 24

The Critical Section Problem II

▶ Requirement: If no process is executing in its critical section and
some processes want to enter their critical sections, then only those
processes that are not executing in their remainder sections can
participate in deciding which will enter its critical section next. This
selection cannot be postponed indefinitely.

▶ Why it’s needed: Prevents deadlocks where processes are perpetually
waiting for each other or a decision that never comes.

3 Bounded Waiting:

▶ Requirement: A bound must exist on the number of times that other
processes are allowed to enter their critical sections after a process has
made a request to enter its critical section and before that request is
granted.

▶ Why it’s needed: Prevents starvation, where a process might
repeatedly lose the ”race” to enter its critical section. Ensures fairness.

SDB OS 7 / 24

What is a Semaphore? A Synchronization Primitive I

Definition
A semaphore is an integer variable used for signaling and synchronization among
processes or threads. It acts as a counter that can be incremented or
decremented.

Key Characteristics:

Semaphores are accessed only through two **atomic operations**: ‘wait()‘
and ‘signal()‘.

Atomic means indivisible: These operations are guaranteed to execute
completely without interruption from other processes, preventing race
conditions on the semaphore itself.

The Two Basic Operations (originally P and V):

wait(S) (also called ‘P(S)‘ or ‘down()‘):

▶ Decrements the semaphore value S .

SDB OS 8 / 24

What is a Semaphore? A Synchronization Primitive II

▶ If S becomes negative (or ≤ 0 depending on implementation), the
process executing the ‘wait()‘ operation is blocked (put into a waiting
queue) until S becomes positive.

▶ Conceptually: ”acquire a resource” or ”wait for a signal.”

signal(S) (also called ‘V(S)‘ or ‘up()‘):

▶ Increments the semaphore value S .
▶ If there are processes waiting on this semaphore, one of them is

unblocked (moved from the waiting queue to the ready queue).
▶ Conceptually: ”release a resource” or ”send a signal.”

Types of Semaphores:

Binary Semaphore (Mutex): Integer value can only be 0 or 1. Used for
mutual exclusion (like a lock). Initialized to 1.

Counting Semaphore: Integer value can range over an unrestricted
domain. Used to control access to a resource that has multiple instances.
Initialized to the number of available resources.

SDB OS 9 / 24

Semaphore Usage: Mutual Exclusion Example I

Protecting a Critical Section with a Binary Semaphore (Mutex)

A binary semaphore (often called ‘mutex‘) is initialized to 1.

A process/thread must perform ‘wait(mutex)‘ before entering its critical
section.

It must perform ‘signal(mutex)‘ after exiting its critical section.
1 // Global binary semaphore , initialized to 1

2 semaphore mutex = 1;

3
4 void process_or_thread_function () {

5 while (true) {

6 // Entry Section: Request access to critical section

7 wait(mutex); // Decrements mutex. If mutex is 0, thread blocks.

8
9 // Critical Section: Access shared data (e.g., ‘count++‘)

10 // Only one thread can be here at a time.

11 // ... (your shared data manipulation code) ...

12
13 // Exit Section: Release access

14 signal(mutex); // Increments mutex. If threads are waiting , one is unblocked.

15
16 // Remainder Section: Non -critical operations

17 // ...

18 }

19 }

SDB OS 10 / 24

Semaphore Usage: Mutual Exclusion Example II

How it ensures Mutual Exclusion:

If ‘mutex‘ is 1, the first ‘wait()‘ succeeds, ‘mutex‘ becomes 0, and the
thread enters the critical section.

If another thread then calls ‘wait()‘, ‘mutex‘ is 0, so that thread blocks.

When the first thread calls ‘signal()‘, ‘mutex‘ becomes 1, and the blocked
thread (if any) is unblocked and can now enter.

This simple pattern ensures that only one process is in the critical section at any

time.

SDB OS 11 / 24

Classic Synchronization Problem: The Producer–Consumer
Problem I

The Scenario:

Two types of processes:

▶ A Producer process that generates data items.
▶ A Consumer process that consumes data items.

They share a common, fixed-size buffer (e.g., an array or queue).

The Challenge (What needs synchronization):

1 Mutual Exclusion (Shared Buffer Access):

▶ Only one process (producer or consumer) should be allowed to access
the buffer at a time to prevent corrupting the data (e.g., two producers
adding at the same index, or a producer and consumer accessing the
same slot concurrently).

SDB OS 12 / 24

Classic Synchronization Problem: The Producer–Consumer
Problem II

2 Coordination (Buffer Full/Empty):

▶ The producer must not try to add an item to a full buffer. It must wait
if the buffer is full.

▶ The consumer must not try to remove an item from an empty buffer.
It must wait if the buffer is empty.

SDB OS 13 / 24

Producer–Consumer: Visual Flow with Semaphores

Producer

Shared Buffer(Size N)

Consumer

mutex (1)

empty (N)
full (0)

Produce Item
Co
ns
um

e I
tem

wait(empty)

wait(mutex)

signal(mutex)

signal(full)

wait(full)

wait(mutex)

signal(mutex)

signal(empty)

SDB OS 14 / 24

Producer–Consumer with Semaphores: The Code I
Semaphores Initialization:

‘mutex = 1‘: Binary semaphore for mutual exclusion on the buffer.

‘empty = N‘: Counting semaphore, initialized to buffer size ‘N‘, counts
empty slots.

‘full = 0‘: Counting semaphore, initialized to 0, counts full slots.

1 semaphore mutex = 1; // Controls access to the buffer (mutual exclusion)

2 semaphore empty = N; // Counts empty slots in the buffer (initially N)

3 semaphore full = 0; // Counts full slots in the buffer (initially 0)

4
5 // Producer Process/Thread

6 void Producer () {

7 while (true) {

8 // 1. Produce an item (not involving shared resources)

9 // ... item = produce_new_item () ...

10
11 // 2. Wait for an empty slot and acquire buffer lock

12 wait(empty); // Decrement empty count. If 0, blocks (buffer full).

13 wait(mutex); // Acquire mutex. If 0, blocks (buffer busy).

14
15 // 3. Add item to buffer (Critical Section)

16 // ... add_item_to_buffer(item) ...

17
18 // 4. Release buffer lock and signal a full slot

SDB OS 15 / 24

Producer–Consumer with Semaphores: The Code II

19 signal(mutex); // Release mutex. Unblocks waiting consumer/producer.

20 signal(full); // Increment full count. Unblocks waiting consumer.

21 }

22 }

23
24 // Consumer Process/Thread

25 void Consumer () {

26 while (true) {

27 // 1. Wait for a full slot and acquire buffer lock

28 wait(full); // Decrement full count. If 0, blocks (buffer empty).

29 wait(mutex); // Acquire mutex. If 0, blocks (buffer busy).

30
31 // 2. Remove item from buffer (Critical Section)

32 // ... item = remove_item_from_buffer () ...

33
34 // 3. Release buffer lock and signal an empty slot

35 signal(mutex); // Release mutex. Unblocks waiting producer/consumer.

36 signal(empty); // Increment empty count. Unblocks waiting producer.

37
38 // 4. Consume the item (not involving shared resources)

39 // ... consume_item(item) ...

40 }

41 }

SDB OS 16 / 24

Producer–Consumer with Semaphores: The Code III

Explanation of Order:

‘wait(empty)‘ / ‘wait(full)‘: Act as ”gatekeepers” to ensure there are
resources (empty/full slots) before even attempting to enter the critical
section.

‘wait(mutex)‘: Ensures only one process can modify the buffer at a time.

‘signal(mutex)‘: Releases the critical section.

‘signal(full)‘ / ‘signal(empty)‘: Inform the other process type that a slot has
become available/full.

The order of ‘wait()‘ and ‘signal()‘ is crucial to prevent deadlocks and ensure

correct behavior!

SDB OS 17 / 24

Pitfalls in Semaphore Usage: When Things Go Wrong I

Semaphores are powerful but low-level primitives. Incorrect usage can lead to
severe concurrency issues.

Deadlock:

Cause: Two or more processes are indefinitely waiting for an event that can
only be caused by one of the waiting processes (e.g., releasing a resource
that another needs).

Example: If the Producer in the P-C problem did ‘wait(mutex);
wait(empty);‘ and the Consumer did ‘wait(mutex); wait(full);‘ (reversed
order), a deadlock could occur.

Consequence: System becomes unresponsive, processes halt.

Starvation:

Cause: A process may wait indefinitely within the semaphore’s waiting
queue, even though other processes are continually entering and leaving
their critical sections. This can happen with unfair scheduling of the waiting
queue.

SDB OS 18 / 24

Pitfalls in Semaphore Usage: When Things Go Wrong II

Example: If a ‘signal()‘ operation always wakes up the same waiting
process, others might never get a chance.

Consequence: Some processes never make progress.

Busy Waiting (Spinlock):

Cause: In some naive semaphore implementations, if a ‘wait()‘ operation
cannot proceed, the process might repeatedly check the semaphore value in
a tight loop instead of blocking (sleeping).

Consequence: Wastes CPU cycles by keeping the CPU busy even when no
useful work is being done, especially detrimental on single-core systems.

Modern OS Semaphores: Typically implement ‘wait()‘ by putting the
process to sleep (blocking) and ‘signal()‘ by waking it up, avoiding busy
waiting.

SDB OS 19 / 24

Pitfalls in Semaphore Usage: When Things Go Wrong III

Mitigation & Better Practices:

Use higher-level synchronization constructs (like Mutex Locks, Condition
Variables, Monitors) that abstract away the raw semaphore operations and
handle many pitfalls automatically.

Rigorous design and analysis of all entry/exit conditions and potential
interleavings.

Follow established best practices and patterns for concurrent programming.

SDB OS 20 / 24

Quick Quiz: Understanding Semaphores
Test Your Conceptual Understanding:

1 Define: What is the ”critical section” in concurrent programming, and why
is it important to protect it?

2 Requirements: List and briefly explain the three fundamental requirements
that any correct solution to the Critical Section Problem must satisfy.

3 Semaphore Operations: Describe what happens when a process calls
‘wait(S)‘ if ‘S‘ is currently 0. What happens when a process calls
‘signal(S)‘?

4 Producer-Consumer Logic: In the Producer-Consumer problem, why is it
crucial to use *three* semaphores (‘mutex‘, ‘empty‘, ‘full‘) instead of just
one or two? What specific purpose does each serve?

Think & Discuss

Formulate your answers before reviewing the solutions or discussing with
peers.

SDB OS 21 / 24

Quick Quiz: Understanding Semaphores
Test Your Conceptual Understanding:

1 Define: What is the ”critical section” in concurrent programming, and why
is it important to protect it?

2 Requirements: List and briefly explain the three fundamental requirements
that any correct solution to the Critical Section Problem must satisfy.

3 Semaphore Operations: Describe what happens when a process calls
‘wait(S)‘ if ‘S‘ is currently 0. What happens when a process calls
‘signal(S)‘?

4 Producer-Consumer Logic: In the Producer-Consumer problem, why is it
crucial to use *three* semaphores (‘mutex‘, ‘empty‘, ‘full‘) instead of just
one or two? What specific purpose does each serve?

Think & Discuss

Formulate your answers before reviewing the solutions or discussing with
peers.

SDB OS 21 / 24

Key Takeaways I

Race Conditions occur when concurrent access to shared data leads to
unpredictable outcomes.

The Critical Section Problem aims to prevent race conditions by ensuring
only one process/thread enters a critical section at a time, adhering to
Mutual Exclusion, Progress, and Bounded Waiting.

Semaphores are low-level integer synchronization primitives, providing
atomic ‘wait()‘ (decrement/block) and ‘signal()‘ (increment/unblock)
operations.

Binary Semaphores (Mutexes) are used for mutual exclusion. Counting
Semaphores manage multiple resources.

The Producer-Consumer Problem is a classic example demonstrating the
use of semaphores for both mutual exclusion and coordination (empty/full
buffer slots).

Improper use of semaphores can lead to severe issues like deadlock,
starvation, and busy waiting.

SDB OS Summary 22 / 24

Key Takeaways II

Reflection Prompt: The Balance of Power

Semaphores give programmers precise control over synchronization but are
prone to errors. Why do you think higher-level constructs are often preferred
in modern programming, even if they internally use semaphores or similar
primitives? What does ”abstraction” buy us in this context?

SDB OS Summary 23 / 24

Next Week Preview: Advanced Synchronization &
Deadlocks
Beyond Semaphores: Complex Scenarios and Problem Solving

Mutex Locks: A simpler, more common mutual exclusion primitive.

Condition Variables: For threads to wait for specific conditions
(complementary to mutexes).

Monitors: High-level language constructs encapsulating shared data and
synchronization.

Classical Synchronization Problems (Revisited):
▶ Dining Philosophers Problem
▶ Readers-Writers Problem

Deadlock Concepts: Characterization, Prevention, Avoidance, Detection,
Recovery.

Prep Tip for Next Session

Think about how the ”Producer-Consumer” problem would change if you had multiple
producers and multiple consumers. How might ‘wait()‘ and ‘signal()‘ calls need to be
more carefully managed? This will prepare you for more complex scenarios.

SDB OS Summary 24 / 24

Next Week Preview: Advanced Synchronization &
Deadlocks
Beyond Semaphores: Complex Scenarios and Problem Solving

Mutex Locks: A simpler, more common mutual exclusion primitive.

Condition Variables: For threads to wait for specific conditions
(complementary to mutexes).

Monitors: High-level language constructs encapsulating shared data and
synchronization.

Classical Synchronization Problems (Revisited):
▶ Dining Philosophers Problem
▶ Readers-Writers Problem

Deadlock Concepts: Characterization, Prevention, Avoidance, Detection,
Recovery.

Prep Tip for Next Session

Think about how the ”Producer-Consumer” problem would change if you had multiple
producers and multiple consumers. How might ‘wait()‘ and ‘signal()‘ calls need to be
more carefully managed? This will prepare you for more complex scenarios.

SDB OS Summary 24 / 24

Outline

1 Appendix

Exercise: Applying Semaphores to a New Problem I
Part 1: The ‘Incrementer‘ and ‘Decrementor‘ Problem
Imagine two types of threads sharing a global integer variable ‘value‘, initially 0.

‘Incrementer‘ threads: Each calls ‘value++‘ 100 times.

‘Decrementor‘ threads: Each calls ‘value–‘ 100 times.

You have one ‘Incrementer‘ thread and one ‘Decrementor‘ thread.
Task:

1 Why would a race condition occur if ‘value++‘ and ‘value–‘ are not
synchronized?

2 Write pseudocode for the ‘Incrementer‘ and ‘Decrementor‘ functions using a
binary semaphore (‘mutex‘) to ensure the final ‘value‘ is 0. Initialize the
semaphore appropriately.

Part 2: The ”Limited Resources” Problem
You have 5 identical printers shared among multiple processes. Processes request
a printer, use it, and then release it.
Task:

SDB OS Appendix 1 / 5

Exercise: Applying Semaphores to a New Problem II

1 Which type of semaphore (binary or counting) would you use to manage
access to these printers? Why?

2 Write pseudocode for a ‘request printer()‘ function and a ‘release printer()‘
function using your chosen semaphore. Initialize the semaphore
appropriately.

3 What would happen if more than 5 processes tried to acquire a printer
concurrently?

Reminder

Focus on the correct order of ‘wait()‘ and ‘signal()‘ operations and proper
semaphore initialization.

SDB OS Appendix 2 / 5

Appendix: Advanced Topics to Explore I

Deepening Your Understanding of Process Synchronization

I. Synchronization Primitive Internals

Hardware Support for Synchronization: Explore atomic
instructions like ‘TestAndSet‘, ‘CompareAndSwap‘ (CAS), and
‘FetchAndAdd‘ that are fundamental building blocks for semaphores
and other locks.

Spinlocks vs. Mutexes (Detailed): When busy-waiting is
acceptable (e.g., in kernel code for very short critical sections) versus
when blocking is preferred.

Memory Barriers/Fences: How they ensure memory operations are
visible to other processors in a specific order, crucial for multi-core
synchronization.

SDB OS Appendix 3 / 5

Appendix: Advanced Topics to Explore II

II. Advanced Synchronization Constructs

Readers-Writers Locks: A type of mutex that allows multiple
readers but only one writer at a time, optimizing for read-heavy
workloads.

Barriers: A synchronization primitive that makes processes wait at a
certain point until all participating processes have reached that point.

Transactional Memory (TM): A high-level concurrency control
mechanism that allows multiple threads to execute transactions on
shared memory concurrently, with hardware or software handling
conflicts.

SDB OS Appendix 4 / 5

Appendix: Advanced Topics to Explore III

III. Concurrency Challenges & Solutions

Priority Inversion (Revisited): How it manifests in synchronization
and solutions like Priority Inheritance Protocol.

Lock-Free and Wait-Free Data Structures: Designing concurrent
data structures without traditional locks, using atomic operations to
guarantee progress (e.g., non-blocking queues).

Distributed Synchronization: How processes synchronize across
multiple machines in a network (e.g., distributed mutexes, Paxos,
Raft).

SDB OS Appendix 5 / 5

	Summary
	Appendix
	Appendix

