
Threads and Multithreading Models
Week 8

SDB

Autumn 2025

SDB OS 1 / 20



Agenda: Threads and Multithreading Models
Understanding Concurrent Execution within a Process

1 Threads vs. Processes (Lighter-weight concurrency)

2 Benefits of Multithreading (Why use threads?)

3 User-level vs. Kernel-level Threads (Who manages them?)

4 Thread Libraries (e.g., POSIX pthreads) (How to create and manage
threads)

5 Multithreading Models: 1:1, M:1, M:N (Mapping user code to kernel
support)

Think Ahead: Beyond Single-Tasking

Modern applications need to perform many tasks concurrently (e.g., a web
browser rendering a page, playing audio, and downloading files simultane-
ously). How can an operating system enable this fine-grained parallelism
efficiently, without incurring the high overhead of multiple separate pro-
cesses?

SDB OS 2 / 20



Agenda: Threads and Multithreading Models
Understanding Concurrent Execution within a Process

1 Threads vs. Processes (Lighter-weight concurrency)

2 Benefits of Multithreading (Why use threads?)

3 User-level vs. Kernel-level Threads (Who manages them?)

4 Thread Libraries (e.g., POSIX pthreads) (How to create and manage
threads)

5 Multithreading Models: 1:1, M:1, M:N (Mapping user code to kernel
support)

Think Ahead: Beyond Single-Tasking

Modern applications need to perform many tasks concurrently (e.g., a web
browser rendering a page, playing audio, and downloading files simultane-
ously). How can an operating system enable this fine-grained parallelism
efficiently, without incurring the high overhead of multiple separate pro-
cesses?

SDB OS 2 / 20



Threads vs. Processes: Units of Concurrency I

Definition: Process
A Process is an executing instance of a program. It’s an independent unit of
resource allocation and protection (e.g., its own memory space, file handles). It’s
the primary unit of OS scheduling.

Definition: Thread

A Thread (or lightweight process) is a basic unit of CPU utilization within a
process. Threads share the process’s resources (code, data, open files) but have
their own program counter, stack, and register set.

SDB OS 3 / 20



Threads vs. Processes: Units of Concurrency II

Key Differences:
Feature Process Thread
Independence Independent execution envi-

ronment
Part of a process; can
share/access other threads’
data

Memory Separate address space, iso-
lated

Shared address space within
the same process

Resource Sharing Achieved via IPC (pipes,
shared memory)

Direct access to shared data
(global variables)

Overhead (Creation/Context Switch) High (heavyweight) Low (lightweight)
Scheduling Managed by OS kernel Managed by OS kernel (kernel

threads) or user library (user
threads)

Termination If one process terminates, oth-
ers run

If one thread terminates, oth-
ers run (unless fatal error)

Fault Isolation High (crash of one doesn’t af-
fect others)

Low (crash of one thread af-
fects entire process)

SDB OS 4 / 20



Benefits of Multithreading: Efficiency and Responsiveness I

Why build applications with multiple threads?

Responsiveness:

▶ A program can remain responsive to user input while performing a
long-running operation in a separate thread (e.g., a GUI doesn’t freeze
during a file save).

Resource Sharing:

▶ Threads within the same process share code, data, and resources (e.g.,
open files, memory heap). This is more efficient than IPC.

Economy (Lower Overhead):

▶ Creating and switching between threads is significantly faster and
consumes fewer resources than processes. (e.g., 10-100x faster context
switch).

▶ Kernel threads: 100-200 instructions for context switch vs. 1000-2000
for processes.

SDB OS 5 / 20



Benefits of Multithreading: Efficiency and Responsiveness
II

Scalability (Multi-core CPUs):

▶ On multi-core or multiprocessor systems, multiple threads can execute
truly in parallel, significantly speeding up computation-bound tasks.

Caution: Synchronization is Critical!

Sharing data between threads requires careful synchronization mechanisms
(e.g., mutexes, semaphores) to prevent race conditions and data corrup-
tion. This introduces new complexities for the programmer.

SDB OS 6 / 20



User-level vs. Kernel-level Threads: Management &
Visibility I

User-level Threads (ULTs):

▶ Managed entirely by a user-level library (e.g., POSIX ‘pthreads‘
implementation on some older systems, Green Threads in Java).

▶ The OS kernel is unaware of the existence of individual user threads; it
only sees the containing process.

▶ All threads of a process share a single kernel thread.

Kernel-level Threads (KLTs):

▶ Managed directly by the Operating System kernel.
▶ The kernel is aware of and directly schedules each individual kernel

thread.
▶ Each user-level thread can be mapped to its own kernel thread.

SDB OS 7 / 20



User-level vs. Kernel-level Threads: Management &
Visibility II

Trade-offs:
Feature User-level Threads (ULTs) Kernel-level Threads

(KLTs)
Creation/Switching Very Fast (no kernel mode

switch)
Slower (requires kernel mode
switch)

True Parallelism No (one thread blocks, entire
process blocks)

Yes (multiple threads can run
concurrently on multi-core)

System Calls Blocking system call blocks en-
tire process

Blocking system call blocks
only that thread

Scheduling User-defined (library-managed) OS-managed (system-wide
scheduling)

OS Awareness None (kernel sees only one
”thread” per process)

Full (kernel sees and manages
all threads)

Portability More portable (library can run
on different OS)

Less portable (dependent on
OS kernel API)

Example OS Older Solaris Green Threads,
some specialized runtimes

Most modern OS (Linux, Win-
dows, macOS)

SDB OS 8 / 20



POSIX Threads (pthreads) Example I
What are pthreads?

POSIX Threads (‘pthreads‘) is a standard API (Application
Programming Interface) for thread creation and synchronization.

It’s widely used in Unix-like operating systems (Linux, macOS) and also
available on Windows.

It typically provides a 1:1 mapping (each ‘pthread‘ corresponds to a kernel
thread on modern OSes).

Basic Thread Creation in C:

1 #include <pthread.h> // For pthreads API

2 #include <stdio.h> // For printf

3 #include <unistd.h> // For sleep

4
5 // Function that the new thread will execute

6 void* my_thread_function(void* arg) {

7 printf("Hello from the new thread! Arg received: %s\n", (char*)arg);

8 sleep (1); // Simulate some work

9 printf("New thread exiting .\n");

10 return NULL; // Thread returns NULL pointer

11 }

12
13

SDB OS 9 / 20



POSIX Threads (pthreads) Example II

14
15 int main() {

16 pthread_t thread_id; // Variable to store thread ID

17 char* message = "Hello from main thread!";

18
19 printf("Main thread: Creating a new thread .\n");

20
21 // Create a new thread

22 // Args: thread_id pointer , attributes (NULL for default),

23 // start routine , argument to start routine

24 int ret = pthread_create (&thread_id , NULL , my_thread_function , (void*) message);

25 if (ret != 0) {

26 perror("pthread_create failed");

27 return 1;

28 }

29
30 // Wait for the created thread to finish

31 // Args: thread_id , pointer to store return value (NULL if not needed)

32 printf("Main thread: Waiting for new thread to complete .\n");

33 ret = pthread_join(thread_id , NULL);

34 if (ret != 0) {

35 perror("pthread_join failed");

36 return 1;

37 }

38
39 printf("Main thread: New thread has finished. Exiting .\n");

40 return 0;

41 }

SDB OS 10 / 20



POSIX Threads (pthreads) Example III

Compilation & Execution (on Linux/macOS):

gcc -o my_thread_app my_thread_app.c -lpthread # -lpthread links the pthreads library

./ my_thread_app

Output will show interleaved messages from main and the new thread.
Possible Output:

Main thread: Creating a new thread.

Hello from the new thread! Arg received: Hello from main thread!

Main thread: Waiting for new thread to complete.

New thread exiting.

Main thread: New thread has finished. Exiting.

SDB OS 11 / 20



Multithreading Models: Mapping User Threads to Kernel
Threads
Why do we need models?

Operating systems differ in how they provide thread support.

The model dictates how user-level threads (what the programmer writes) are
mapped to kernel-level threads (what the OS schedules).

Three Primary Models:

1 Many-to-One (M:1): Many user threads map to a single kernel thread.

2 One-to-One (1:1): Each user thread maps to a unique kernel thread.

3 Many-to-Many (M:N): Many user threads map to a smaller or equal
number of kernel threads.

Thread Library’s Role: The thread library (e.g., pthreads, Java Virtual
Machine’s thread system) is responsible for managing this mapping,
creating/destroying user threads, and potentially managing them if they are
user-level.

SDB OS 12 / 20



Multithreading Models: Mapping User Threads to Kernel
Threads
Why do we need models?

Operating systems differ in how they provide thread support.

The model dictates how user-level threads (what the programmer writes) are
mapped to kernel-level threads (what the OS schedules).

Three Primary Models:

1 Many-to-One (M:1): Many user threads map to a single kernel thread.

2 One-to-One (1:1): Each user thread maps to a unique kernel thread.

3 Many-to-Many (M:N): Many user threads map to a smaller or equal
number of kernel threads.

Thread Library’s Role: The thread library (e.g., pthreads, Java Virtual
Machine’s thread system) is responsible for managing this mapping,
creating/destroying user threads, and potentially managing them if they are
user-level.

SDB OS 12 / 20



Multithreading Models: Mapping User Threads to Kernel
Threads
Why do we need models?

Operating systems differ in how they provide thread support.

The model dictates how user-level threads (what the programmer writes) are
mapped to kernel-level threads (what the OS schedules).

Three Primary Models:

1 Many-to-One (M:1): Many user threads map to a single kernel thread.

2 One-to-One (1:1): Each user thread maps to a unique kernel thread.

3 Many-to-Many (M:N): Many user threads map to a smaller or equal
number of kernel threads.

Thread Library’s Role: The thread library (e.g., pthreads, Java Virtual
Machine’s thread system) is responsible for managing this mapping,
creating/destroying user threads, and potentially managing them if they are
user-level.

SDB OS 12 / 20



Thread Mapping Models (Illustration)

Process
U1

U2

U3

K1

Many-to-One (M:1)
(User-level thread library manages scheduling)

Process
U1

U2

U3

K1

K2

K3

One-to-One (1:1)
(Most common in modern OS)

Process
U1

U2

U3

U4

K1

K2

Many-to-Many (M:N)
Flexible, complex.

U.L. scheduler manages mapping

• User-Level Threads Kernel-Level Threads

SDB OS 13 / 20



Many-to-Many Model (M:N): Hybrid Flexibility I

Concept: A flexible model where many user-level threads are multiplexed onto a
smaller or equal number of kernel-level threads.

Key Characteristics:

Combines the best features of M:1 and 1:1 models.

The operating system creates a number of kernel threads (less than or equal
to the number of user threads).

The user-level thread library maps user threads to these available kernel
threads dynamically.

When a user thread makes a blocking system call, the user-level thread
library can switch another user thread to run on the same kernel thread,
preventing the entire process from blocking.

SDB OS 14 / 20



Many-to-Many Model (M:N): Hybrid Flexibility II

Pros & Cons:

Pros:

▶ True parallelism on multi-core systems (via multiple kernel threads).
▶ Efficient handling of blocking system calls (one user thread blocks,

others can run).
▶ User-level thread management (fast context switching).

Cons:

▶ Significantly more complex to implement both in the OS kernel and the
user-level thread library.

▶ Requires complex coordination between the kernel and the user-level
library.

SDB OS 15 / 20



Many-to-Many Model (M:N): Hybrid Flexibility III

Usage:

Historically used in some older Unix systems (e.g., Solaris prior to version 9).

Less common as a primary model in modern general-purpose OSes (like
Linux, Windows) which predominantly use 1:1.

However, concepts are found in highly concurrent runtimes and virtual
machines (e.g., Go’s goroutines, Java’s virtual threads/fibers often
implement a similar user-to-kernel thread mapping).

SDB OS 16 / 20



Discussion Prompt: Choosing the Right Threading Model
Consider the following application types: Which threading model(M:1, 1:1,
M:N) would be most suitable, and why?
Justify your choice based on performance (context switching, parallelism), OS
visibility, and overhead.

Scenario 1: A Scientific Computation Application

▶ Needs to perform 1000 highly parallel, CPU-bound computations
simultaneously.

▶ Each computation is independent and does not involve I/O.

Scenario 2: A Real-time Audio Processing Engine

▶ Requires extremely low latency and predictable response times.
▶ Involves frequent I/O (reading audio data) and CPU processing.

Scenario 3: A High-Throughput Web Server

▶ Handles thousands of concurrent client requests.
▶ Each request involves a mix of CPU processing and blocking I/O (e.g.,

reading from disk, network communication).

SDB OS 17 / 20



Key Takeaways I

Threads are lightweight units of execution within a process, sharing
resources but having independent execution contexts. They offer efficient
concurrency.

Multithreading provides significant benefits: improved responsiveness,
efficient resource sharing, reduced overhead, and true parallelism on
multi-core systems.

User-level threads are managed by a library in user space (fast, but limited
parallelism and blocking issues).

Kernel-level threads are managed and scheduled directly by the OS kernel
(true parallelism, but higher overhead).

Multithreading Models define how user threads map to kernel threads:

▶ Many-to-One (M:1): User-managed, no true parallelism, entire
process blocks on I/O.

▶ One-to-One (1:1): Kernel-managed, true parallelism, widely used in
modern OSes.

SDB OS Summary 18 / 20



Key Takeaways II

▶ Many-to-Many (M:N): Hybrid approach, flexible but complex.

Careful synchronization is essential when using threads to prevent race
conditions.

Reflection Prompt: Debugging Threads

If multiple threads within a single process are accessing and modifying a
shared global variable without any synchronization, what kind of problem
might arise? How would this manifest (e.g., crashes, incorrect results)?
Why is this particularly challenging to debug?

SDB OS Summary 19 / 20



Next Week Preview: Thread Synchronization
Ensuring Data Consistency and Order in Concurrent Programs

The Critical-Section Problem: Understanding race conditions and mutual
exclusion.

Hardware-based Solutions: Test-and-Set, Compare-and-Swap.

Software-based Solutions: Peterson’s Solution.

Synchronization Tools:
▶ Mutex Locks: Basic mutual exclusion.
▶ Semaphores: More generalized signaling mechanisms.
▶ Condition Variables: For threads to wait on specific conditions.

Classic Synchronization Problems: Bounded-Buffer, Readers-Writers,
Dining-Philosophers.

Prep Tip for Next Session

Think about everyday scenarios where concurrent access to a shared resource could
lead to problems (e.g., multiple people trying to update a shared calendar, multiple
cashiers accessing the same inventory). This will help you understand the need for
synchronization.

SDB OS Summary 20 / 20



Next Week Preview: Thread Synchronization
Ensuring Data Consistency and Order in Concurrent Programs

The Critical-Section Problem: Understanding race conditions and mutual
exclusion.

Hardware-based Solutions: Test-and-Set, Compare-and-Swap.

Software-based Solutions: Peterson’s Solution.

Synchronization Tools:
▶ Mutex Locks: Basic mutual exclusion.
▶ Semaphores: More generalized signaling mechanisms.
▶ Condition Variables: For threads to wait on specific conditions.

Classic Synchronization Problems: Bounded-Buffer, Readers-Writers,
Dining-Philosophers.

Prep Tip for Next Session

Think about everyday scenarios where concurrent access to a shared resource could
lead to problems (e.g., multiple people trying to update a shared calendar, multiple
cashiers accessing the same inventory). This will help you understand the need for
synchronization.

SDB OS Summary 20 / 20



Outline

1 Appendix



Quick Quiz: Threads and Models
Test Your Conceptual Understanding:

1 Scenario: A web browser tab freezes because a complex JavaScript calculation is running.
Other tabs in the same browser process continue to work. What threading model is this
browser likely using for its tabs? Justify your answer.

2 True/False: Creating 1000 user-level threads (M:1 model) will generally consume
significantly more kernel memory than creating 1000 kernel-level threads (1:1 model).
Justify your answer.

3 Definition: What is the primary advantage of a Many-to-Many (M:N) threading model
over a Many-to-One (M:1) model, particularly on a multi-core processor?

4 Problematic Aspect: If multiple threads within a process need to increment a shared
counter variable, why is direct unsynchronized access problematic, and what type of
problem does it lead to?

Think & Discuss

Formulate your answers before reviewing the solutions or discussing with peers.

SDB OS Appendix 1 / 5



Quick Quiz: Threads and Models
Test Your Conceptual Understanding:

1 Scenario: A web browser tab freezes because a complex JavaScript calculation is running.
Other tabs in the same browser process continue to work. What threading model is this
browser likely using for its tabs? Justify your answer.

2 True/False: Creating 1000 user-level threads (M:1 model) will generally consume
significantly more kernel memory than creating 1000 kernel-level threads (1:1 model).
Justify your answer.

3 Definition: What is the primary advantage of a Many-to-Many (M:N) threading model
over a Many-to-One (M:1) model, particularly on a multi-core processor?

4 Problematic Aspect: If multiple threads within a process need to increment a shared
counter variable, why is direct unsynchronized access problematic, and what type of
problem does it lead to?

Think & Discuss

Formulate your answers before reviewing the solutions or discussing with peers.

SDB OS Appendix 1 / 5



Exercise: Applying Threading Concepts
Part 1: Thread Context Analysis
Consider a multi-threaded process. List the components of a process’s context that are shared
among its threads, and the components that are unique to each thread.
Part 2: Model Selection Scenario
You are developing a high-performance scientific simulation application that requires massive
parallelism. The application generates millions of independent data points, each requiring a
separate computation that is CPU-bound and has no I/O dependencies.
Task:

1 If you could choose any threading model, which one (M:1, 1:1, M:N) would be
theoretically *most ideal* for this application’s performance on a 64-core machine?
Explain your choice in terms of parallelism and overhead.

2 If the only available threading library on your target embedded system supports an M:1
model, what practical limitations would you face in trying to achieve high performance for
this application?

3 Now, imagine the simulation involves occasional heavy disk I/O (e.g., reading large
datasets for some calculations). How would this change your preferred threading model,
and why?

Reminder

Relate your answers back to the fundamental characteristics and trade-offs of processes
and threads.

SDB OS Appendix 2 / 5



Appendix: Week 8 Advanced Topics to Explore I

Beyond Core Concepts: Deeper Dives into Threading

I. Threading Mechanisms & Libraries

Native Thread APIs: Explore specific thread APIs beyond POSIX
(e.g., Windows Thread API, Java Threads, C++ ‘std::thread‘).

Thread Pools: How applications manage a pool of reusable threads
to reduce creation/destruction overhead for short-lived tasks.

Fibers/Coroutines: Even lighter-weight concurrency units than
user-level threads, managed entirely by the application, offering
cooperative multitasking.

Language-level Concurrency Primitives: How modern languages
(Go Goroutines, Rust ‘async‘/‘await‘, Python ‘asyncio‘) provide
built-in support for concurrency.

SDB OS Appendix 3 / 5



Appendix: Week 8 Advanced Topics to Explore II

II. Concurrency vs. Parallelism & Performance

Amdahl’s Law: Understanding the theoretical speedup limits of
parallelizing a task.

Cache Coherency & False Sharing: How multi-core systems
manage shared data in caches and potential performance pitfalls.

Memory Models: How different architectures and languages
guarantee (or don’t guarantee) visibility of memory writes between
threads (e.g., C++ memory model, Java memory model).

CPU Affinity (Revisited): How threads can be ”pinned” to specific
CPU cores for performance reasons.

SDB OS Appendix 4 / 5



Appendix: Week 8 Advanced Topics to Explore III

III. Threading in Specific Contexts

Green Threads (Historical Context): Understanding their role in
early Java implementations and why they largely moved to native
threads.

Process vs. Thread Pools in Web Servers: When to use
multiprocess vs. multithreaded models for handling requests in web
server architectures.

Debugging Multithreaded Applications: Specific challenges (race
conditions, deadlocks, non-deterministic bugs) and tools (debuggers,
thread sanitizers).

SDB OS Appendix 5 / 5


	Summary
	Appendix
	Appendix


