Real-Time Scheduling and Case Studies
Week 7

SDB

Autumn 2025

Agenda: Real-Time & Modern OS Scheduling

Beyond General Purpose: Predictability and Fairness in Complex Systems

@ Real-Time Scheduling Concepts (Guaranteed responsiveness)

@ Rate Monotonic Scheduling (RMS) (Static priorities for deadlines)

@ Earliest Deadline First (EDF) (Dynamic priorities for deadlines)

@ Linux: Completely Fair Scheduler (CFS) (Fairness at scale)

® Windows Scheduler & Dispatching (Responsiveness and priority
management)

® Comparative Discussion & Hands-on

SDB 0s 1/25

Agenda: Real-Time & Modern OS Scheduling

Beyond General Purpose: Predictability and Fairness in Complex Systems

@ Real-Time Scheduling Concepts (Guaranteed responsiveness)

@ Rate Monotonic Scheduling (RMS) (Static priorities for deadlines)

@ Earliest Deadline First (EDF) (Dynamic priorities for deadlines)

@ Linux: Completely Fair Scheduler (CFS) (Fairness at scale)

® Windows Scheduler & Dispatching (Responsiveness and priority
management)

® Comparative Discussion & Hands-on

Think Ahead: When Predictability is Paramount

For systems like aircraft control or medical devices, missing a deadline is
not an option. How do scheduling algorithms guarantee task completion
within strict time constraints? And how do general-purpose OSes balance
fairness for hundreds of processes with responsiveness for interactive users?

SDB 0s 1/25

What is Real-Time Scheduling? Meeting Deadlines |

Concept: A scheduler that guarantees tasks are completed within specific time
constraints (deadlines). Crucial for systems where timeliness is as important as
correctness.

Characteristics:

o Determinism: Predictable behavior; task execution times are known or
bounded.

o Predictability: Ensures that tasks will meet their deadlines consistently.
o Responsiveness: Quick reaction to external events or internal triggers.

o Reliability: High availability and fault tolerance.

SDB 0s 2/25 »

What is Real-Time Scheduling? Meeting Deadlines Il

Types of Real-Time Systems:
o Hard Real-Time Systems:

» Definition: Missing a deadline leads to catastrophic failure (e.g., flight
control, pacemaker).

» Requires absolute guarantees; often uses highly specialized OSes
(RTOS).

o Soft Real-Time Systems:

» Definition: Missing a deadline is undesirable but not catastrophic;
performance degrades.

» Examples: Multimedia streaming, online gaming, often achieved with
general-purpose OSes with real-time extensions.

SDB 0s 3/25 m

Rate Monotonic Scheduling (RMS): Static Priority for
Real-Time |

Rule: Static-Priority Scheduling

RMS assigns static priorities to periodic tasks based on their frequency (rate):
Shorter period —> Higher priority. Once a task is assigned a priority, it

remains fixed throughout its execution.

Assumptions for Basic RMS:
o Tasks are periodic and independent (no resource sharing).
o CPU burst time is constant for each task.

o Deadlines are at the end of each period.

©

Context switch time is negligible.

SDB 0s 4/25 m

Rate Monotonic Scheduling (RMS): Static Priority for
Real-Time |

Schedulability Test (Liu & Layland Bound): For a set of n independent
periodic tasks, RMS can guarantee schedulability if their total CPU utilization U
is below a specific bound:

U= Z n(2/" - 1)

Where C; is the CPU burst time of task i, and T; is the period of task i. As
n — oo, the bound approaches In(2) = 0.693 (or 69.3%).

Pros & Cons:

o Pros: Simple to implement, static priorities reduce runtime overhead, good
for predictable, fixed workloads.

o Cons: CPU utilization bound is pessimistic (can fail to schedule even if total
utilization < 100%), not suitable for aperiodic tasks or shared resources
without extensions.

SDB 0s 5/25 m

RMS Example: Schedulability and Execution

Tasks: (Execution Time C;, Period T;)
O Task1(P1): G;=1T1=4
O Task2 (P2): & =2, T, =6

SDB 0s 6/25 wu

RMS Example: Schedulability and Execution
Tasks: (Execution Time C;, Period T;)
0 Task1(Pl): G,=1, T =4
O Task2 (P2): & =2, T, =6
Step 1: Calculate Utilization (U)
U— G n G

1 2
= — = -+ - =0.2540.333 = 0.583
T1 T, 4 + 6 *

SDB 0OS

6 /25 wm

RMS Example: Schedulability and Execution
Tasks: (Execution Time C;, Period T;)
0 Task1(Pl): G,=1, T =4
O Task2 (P2): & =2, T, =6
Step 1: Calculate Utilization (U)
U— G n G

1 2
= — = -+ - =0.2540.333 = 0.583
T1 T, 4 + 6 *

Step 2: Apply RMS Schedulability Test (n = 2)

n(2Y/" —1) =2(2Y/2 — 1) = 2(v2 — 1) = 2(1.414 — 1) = 2(0.414) = 0.828

SDB 0S

6 /25 wm

RMS Example: Schedulability and Execution
Tasks: (Execution Time C;, Period T;)
0 Task1(Pl): G,=1, T =4
O Task2 (P2): & =2, T, =6
Step 1: Calculate Utilization (U)
U— G n G

12
== =-42=0.25+0.333=0.583
ntTn"ats *
Step 2: Apply RMS Schedulability Test (n = 2)
n(2Y/" —1) =2(2Y/2 — 1) = 2(v2 — 1) = 2(1.414 — 1) = 2(0.414) = 0.828

Step 3: Compare Utilization to Bound U = 0.583 < 0.828. Since U is within the bound, the
task set is schedulable by RMS.

SDB 0s 6/25 wu

RMS Example: Schedulability and Execution
Tasks: (Execution Time C;, Period T;)
0 Task1(Pl): G,=1, T =4
O Task2 (P2): & =2, T, =6
Step 1: Calculate Utilization (U)
U— G n G

1 2
= — = -+ - =0.2540.333 = 0.583
T1 T, 4 + 6 *

Step 2: Apply RMS Schedulability Test (n = 2)
n(2Y/" — 1) =2(2Y/2 —1) = 2(v/2 — 1) = 2(1.414 — 1) = 2(0.414) = 0.828
Step 3: Compare Utilization to Bound U = 0.583 < 0.828. Since U is within the bound, the
task set is schedulable by RMS.
Step 4: Determine Priorities

@ P1 Period = 4, P2 Period = 6.
@ P1 has higher priority (shorter period).

SDB 0s 6/25 wu

RMS Example: Schedulability and Execution
Tasks: (Execution Time C;, Period T;)
0 Task1(Pl): G,=1, T =4
O Task2 (P2): & =2, T, =6
Step 1: Calculate Utilization (U)
U— G n G

1 2
= — = -+ - =0.2540.333 = 0.583
T1 T, 4 + 6 *

Step 2: Apply RMS Schedulability Test (n = 2)
n(2Y/" — 1) =2(2Y/2 —1) = 2(v/2 — 1) = 2(1.414 — 1) = 2(0.414) = 0.828

Step 3: Compare Utilization to Bound U = 0.583 < 0.828. Since U is within the bound, the
task set is schedulable by RMS.
Step 4: Determine Priorities

@ P1 Period = 4, P2 Period = 6.

@ P1 has higher priority (shorter period).
Step 5: Conceptual Execution (Gantt Chart) (Assume tasks arrive at t = O for their first
period, then every T; thereafter)

g 2 g o
3 S S e
[=] a [=} [a]a)
P1 P2 : P1 : P2 : P1 :
y T b 3 L 5 & T 3 Y To 1T 2

All deadlines are met.
SDB 0s 6/25 wm

Earliest Deadline First (EDF): Dynamic Priority for
Real-Time |

Concept:

o Dynamic Priority: Priorities are re-calculated at each scheduling point
(arrival, completion, preemption).

o The process with the earliest absolute deadline (arrival time + relative
deadline) runs first.

o If two tasks have the same deadline, FCFS is typically used as a tie-breaker.

Assumptions for Basic EDF:
o Tasks are periodic or aperiodic with known execution times and deadlines.
o Deadlines are usually equal to or less than the period.

o Context switch time is negligible.

SDB 0s 7/25 wm

Earliest Deadline First (EDF): Dynamic Priority for
Real-Time |

Schedulability Test: For a set of n independent periodic tasks, EDF can
guarantee schedulability if their total CPU utilization U is:

Z

\Hﬁ

EDF is considered optimal because it can fully utilize the CPU (up to 100%) if
the tasks are schedulable.

Pros & Cons:

o Pros: Higher CPU utilization (up to 100% if schedulable), more flexible
than RMS, can handle aperiodic tasks well.

o Cons: More complex to implement due to dynamic priorities, higher runtime

overhead (recalculating priorities), unpredictable behavior if overloaded (all
tasks might miss deadlines).

SDB 0s 8 /25 wm

EDF Example: Dynamic Priorities in Action
Tasks: (Execution Time C;, Period T;, Deadline D; (=T;))

o Task 1 (P1): GG =1, Ty =4
0 Task2 (P2): =2, T, =6

SDB 0OS

9 /25 mem

EDF Example: Dynamic Priorities in Action
Tasks: (Execution Time C;, Period T;, Deadline D; (=T;))

o Task 1 (P].) C1 = 1, Tl =4
o Task2 (P2): =2, T, =6
Step 1: Calculate Utilization (U)

_a e b2 00510333 - 0583

U_?l T, 46

SDB 0OS 9 /25 mem

EDF Example: Dynamic Priorities in Action
Tasks: (Execution Time C;, Period T;, Deadline D; (=T;))

o Task 1 (P].) C1 = 1, Tl =4
o Task2 (P2): =2, T, =6
Step 1: Calculate Utilization (U)

G G 1

2

Step 2: Apply EDF Schedulability Test U = 0.583 < 1. The task set is

schedulable by EDF.

SDB 0OS

9 /25 mem

EDF Example: Dynamic Priorities in Action
Tasks: (Execution Time C;, Period T;, Deadline D; (=T;))

o Task 1 (P].) C1 = 1, Tl =4
o Task2 (P2): =2, T, =6
Step 1: Calculate Utilization (U)

G G 1 2 B
Step 2: Apply EDF Schedulability Test U = 0.583 < 1. The task set is
schedulable by EDF.

U

Step 3: Corrected Execution (Gantt Chart) (Tasks arrive at t =0, 4, 6, 8,
etc. Deadlines are T; from arrival.)

P2 DL=12
P1 DL=4 P2 DL=6 P1DL=8 P1DL=12

1
P1 P2 }
S R B B

1 1
| 1
| 1
T T S T T N

All deadlines are met by dynamically scheduling the task with the earliest deadline.
SDB 0s 9 /25 e

RMS vs EDF: A Direct Comparison

Feature

Rate Monotonic Scheduling (RMS)

Earliest Deadline First (EDF)

Priority Type
Priority Basis
Schedulability
Bound
Implementation
Runtime Overhead
Overload Behavior

Flexibility

Common Usage

Static (fixed at design time)

Shorter Period = Higher Priority
< n(2Y/" — 1) (approx. 69% for large
n)

Simpler (less runtime overhead)

Lower context switching frequency (for
fixed tasks)

Predictable; highest priority tasks meet
deadlines, lower ones may fail.

Less flexible; difficult with aperiodic
tasks or varying loads.

Hard Real-Time OS (e.g., VxWorks,
QNX), industrial control.

Dynamic (changes at runtime)

Earliest Deadline = Highest Priority
< 100%

More Complex recalcula-
tions)

Higher, due to frequent priority re-
evaluations
Unpredictable;
deadlines.
More flexible; handles aperiodic tasks
better.

Less common in bare-metal RTOS,
sometimes in RT Linux, flexible embed-
ded systems.

(dynamic

all tasks might miss

SDB

0S

10 / 25

Linux CFS (Completely Fair Scheduler): General Purpose
Fairness |

Concept: Introduced in Linux kernel 2.6.23, CFS is the default scheduler for
normal (non-real-time) processes. Its primary goal is fairness — ensuring that all
processes receive a "fair” share of CPU time relative to their assigned weight.
Key Principles:

o Proportional Share: Instead of fixed time slices (like Round Robin), CFS
aims for a proportional distribution of CPU time based on task "weight”.

o Virtual Runtime (vruntime): Each runnable task has a ‘vruntime' value,

which tracks the amount of time it would have run on an "ideal” perfectly
fair CPU.

o Red-Black Tree: The runnable tasks are stored in a red-black tree, sorted
by their ‘vruntime'. The task with the smallest ‘vruntime' (meaning it's
"fallen behind” the most in terms of CPU allocation) is always picked next.

o Minimizing Latency: While fairness is primary, CFS also tries to keep
interactive task latency low.

SDB 0S 11 /25w

Linux CFS (Completely Fair Scheduler): General Purpose
Fairness |l

Pros:

o Excellent Fairness: The scheduler tracks the virtual runtime of each
process, ensuring every process gets a "fair” share of CPU time over time.
No single process can dominate the CPU.

o Highly Scalable: It uses efficient data structures (like a red-black tree) to
manage processes, allowing it to scale effectively with a large number of
cores and thousands of processes without performance bottlenecks.

o Good Responsiveness for Interactive Tasks: Processes that spend more
time waiting for user input get a higher priority when they are ready to run
again. This makes the system feel quick and responsive.

o No Starvation: Every process is guaranteed to eventually run. As a process
waits, its priority effectively increases until it is chosen by the scheduler,
eliminating the risk of waiting indefinitely.

SDB 0S 12 / 25w

Linux CFS (Completely Fair Scheduler): General Purpose
Fairness Il

Cons:

o Not Suitable for Hard Real-Time Tasks: These schedulers prioritize
fairness over strict deadlines. They cannot guarantee that a critical task will
be executed by a specific time, making them unsuitable for mission-critical
real-time systems.

o Higher Overhead than Simpler Schedulers: To achieve their goals, these
schedulers use more complex logic and data structures. This results in a
slightly higher overhead compared to very simple schedulers like First-Come,
First-Served (FCFS) or Round-Robin (RR).

SDB 0S 13 / 25 s

CFS: The Run Queue as a Red-Black Tree
Concept: The red-black tree in CFS acts as the “run queue”. It's a
self-balancing binary search tree that keeps tasks sorted by their ‘vruntime’.

Illustration:

How it works:

o The process with the smallest ‘vruntime' is always the leftmost node (e.g.,
P1). It gets chosen to run.

@ When a process's time slice expires, its ‘vruntime' is updated.
o The process is then re-inserted into a new position in the tree, based on its
new ‘vruntime’ value.

SDB 0S 14 / 25 s

Linux CFS: The vruntime Calculation |

Goal: Ensure processes get CPU time proportional to their "weight” (derived
from 'nice' value). Simplified vruntime Formula (Conceptual):

. .) SCHED_NICE_WEIGHT_HZ
vruntimenew = vruntimegy+ | actual_CPU_run_time x -
task_weight

Key Components:

o ‘actual_CPU_run_time‘: The real CPU time the task just consumed.
o ‘nice_value’ (User-set priority):

» A user-set value (from -20 to +19, default 0).
» Lower ‘nice’ value (e.g., -20) implies higher user preference.

SDB 0S 15 / 25

Linux CFS: The vruntime Calculation Il

o ‘task_weight' (Derived from ‘nice_value‘):

» A lookup table maps ‘nice_value' to ‘task_weight'.
» Higher ‘task_weight' means the task deserves more CPU time (and its
‘vruntime' will increase slower for the same actual runtime).

» Example: ‘nice 0' has a weight of 1024. ‘nice 1' has weight 820. ‘nice
-5' has weight 2379.

o ‘SCHED_NICE_WEIGHT_HZ": A constant for normalization (1024 in
many kernels, corresponding to nice 0's weight).

Essentially, ‘vruntime’ aims to track normalized CPU usage. A task with a lower
‘nice’ value (higher weight) will see its ‘vruntime' increase slower, meaning it stays
closer to the leftmost part of the red-black tree and gets scheduled more often.

SDB 0S 16 / 25 m—

Windows Scheduling Mechanism: Priority-Based
Responsiveness |

Overview: The Windows scheduler (Dispatcher) is a priority-based, preemptive,
and multi-level feedback queue scheduler that operates on threads. Key

Features:
o 32 Priority Levels:

» Real-Time (16-31): Fixed priorities, for system-critical tasks. No
dynamic changes.

» Dynamic (1-15): Priorities can change based on system activity
(aging, boosting).
» Zero (0): Special system idle thread.

SDB 0S 17 / 25 s

Windows Scheduling Mechanism: Priority-Based
Responsiveness I

o Dynamic Priority Adjustments:

» Boosting: Threads receive temporary priority boosts for various
reasons (e.g., completing /0O, becoming foreground application, user
input). This enhances responsiveness.

» Decaying (Aging): After a quantum expires or a boost expires, a
thread's dynamic priority is typically lowered (decayed) over time,
unless it's a critical thread.

o Quantum-Based Preemption: Each thread runs for a fixed time quantum.
When the quantum expires, the thread is preempted.

o Dispatcher Object: The central component that selects the highest-priority
runnable thread and performs context switching.

SDB 0S 18 / 25

Windows Scheduling Mechanism: Priority-Based
Responsiveness ||

Emphasis: Windows scheduling strongly emphasizes responsiveness for
interactive applications (especially foreground Ul threads) through its boosting
and priority management mechanisms. Pros & Cons:

o Pros: Excellent responsiveness for interactive tasks, good balance between
throughput and latency, robust priority management.

o Cons: Can be complex to predict exact behavior, potential for priority
inversion (though mitigations exist), not designed for hard real-time
guarantees.

SDB 0S 19 / 25

Comparing Linux CFS and Windows Scheduler

Feature

Linux CFS

Windows Scheduler

Core Philosophy
Preemption

Priority Management
Run Queue Structure
Starvation Prevention
Real-Time Support
Typical Workload

Proportional Share / Fairness
Yes (based on ‘vruntime’ / quantum)
Dynamic ‘vruntime' (from ‘nice' value)

Red-Black Tree

Inherent in ‘vruntime' fairness model
Separate ‘SCHED_FIFO'/'SCHED_RR" policies
Servers, Desktops, Embedded (fair for all types)

Priority-based / Responsiveness
Yes (based on priority / quantum)
32 fixed + dynamic levels (boosting/decaying)
Ready queues (one per priority level)
Aging and Priority Boosting
Dedicated Real-Time priority levels (16-31)
Desktops, Workstations (optimized for interactivity)

SDB

0S

20 / 25 m—

Hands-on Linux: Observe Scheduler Behavior |
Explore Linux Process and Scheduler States:

o Open a terminal and use these commands to observe processes and their
scheduling attributes.

o Pay attention to ‘PR’ (priority), ‘NI' (nice value), ‘'STAT" (process state), '

Show processes in a tree structure, including NI
(nice) values
htop --tree # or ‘top‘ and look at NI column

List processes with specific scheduling
information

PID: process ID, COMM: command, NI: nice value,
PRI: kernel priority

PCPU: CPU usage (percentage), STAT: process
status

ps -eo pid,comm,ni,pri,pcpu,stat --sort=-pcpu

SDB 0S 21 / 25 we—

Hands-on Linux: Observe Scheduler Behavior Il

Check real-time scheduling policy for a specific
process (replace <pid>)

(e.g., ‘chrt -p <pid of your shell>*‘)

chrt -p <pid>

Run a process with a custom nice value (e.g.,
lower priority by setting nice 10)
This process will receive less CPU time from CFS

nice -n 10 dd if=/dev/zero of=/dev/null &
Run a process with a higher priority (negative
nice value requires sudo)

(e.g., ‘sudo nice -n -10 dd if=/dev/zero of=/dev
/null &°¢)

SDB 0s 22 / 25 m—

Hands-on Linux: Observe Scheduler Behavior IlI

Advanced: Inspecting Scheduler Debug Information (Requires root):

o This file provides detailed, low-level insights into the CFS scheduler’s current
state, including ‘vruntime’ values.

sudo cat /proc/sched_debug | less

(Look for sections like 'runnable tasks' and their 'vruntime’ values.)

SDB 0S 23 / 25 we—

Key Takeaways

o

Real-Time Scheduling guarantees deadlines, with Hard RT demanding
absolute predictability (e.g., RMS, EDF).

RMS uses static priorities (shorter period = higher priority) and has a
clear utilization bound.

EDF uses dynamic priorities (earliest deadline = highest priority), can
achieve 100% utilization, but is more complex.

Linux CFS is a general-purpose, fairness-based scheduler using virtual
runtime and a red-black tree for proportional CPU distribution.

Windows Scheduler is a priority-based, preemptive system that prioritizes
responsiveness through dynamic priority boosting and decaying.

The choice of scheduler depends heavily on the system’s goals: strict
deadlines vs. general-purpose fairness and responsiveness.

SDB OS Summary 24 [25 w—

Key Takeaways

o Real-Time Scheduling guarantees deadlines, with Hard RT demanding
absolute predictability (e.g., RMS, EDF).

o RMS uses static priorities (shorter period = higher priority) and has a
clear utilization bound.

o EDF uses dynamic priorities (earliest deadline = highest priority), can
achieve 100% utilization, but is more complex.

o Linux CFS is a general-purpose, fairness-based scheduler using virtual
runtime and a red-black tree for proportional CPU distribution.

o Windows Scheduler is a priority-based, preemptive system that prioritizes
responsiveness through dynamic priority boosting and decaying.

o The choice of scheduler depends heavily on the system’s goals: strict
deadlines vs. general-purpose fairness and responsiveness.

Reflection Prompt: The Scheduler’s Dilemma

Imagine a smartphone running both a real-time voice assistant (requires low latency) and
a background photo upload (CPU-intensive). How might the concepts of RMS/EDF and
CFS/Windows-like boosting be combined or modified to handle such a mixed workload
effectively, without one starving the other?

SDB OS Summary 24 [25 w—

Next Week Preview: Threads and Multithreading Models

From Processes to Threads: Finer-Grained Concurrency
o Introduction to Threads: Why threads are needed, process vs. thread.

o User-Level vs. Kernel-Level Threads: Understanding their differences
and implementation.

o Multithreading Models: One-to-One, Many-to-One, Many-to-Many
models.

o Thread Libraries (‘pthreads’): How developers create and manage threads.

o Thread Context Switching: How it differs from process context switching.

SDB OS Summary 25 / 25 m—

Next Week Preview: Threads and Multithreading Models

From Processes to Threads: Finer-Grained Concurrency

Qo

(*]

Introduction to Threads: Why threads are needed, process vs. thread.

User-Level vs. Kernel-Level Threads: Understanding their differences
and implementation.

Multithreading Models: One-to-One, Many-to-One, Many-to-Many
models.

Thread Libraries (‘pthreads‘): How developers create and manage threads.

Thread Context Switching: How it differs from process context switching.

Prep Tip for Next Session

Review the concept of a process Control Block (PCB) and process context.

Think about what information would still be unique to a thread and what
could be shared among threads within the same process.

SDB OS Summary 25 / 25 m—

Outline

@ Appendix

Quick Quiz: Real-Time & Modern Scheduling |

Test Your Conceptual Understanding:

@ Scenario: You have two periodic tasks. Task A: (C=2, T=5), Task B:
(C=1, T=3).

» What priority would RMS assign to Task A relative to Task B?
» Could EDF schedule these tasks if RMS cannot?

@ True/False: In Linux CFS, a task with a 'nice' value of +10 will typically
receive more CPU time than a task with a ‘nice’ value of 0, assuming they
are otherwise identical. Justify your answer.

@ Define: Explain the primary purpose of " priority boosting” in the Windows
Scheduler. How does it benefit interactive user experience?

@ Application: For which type of system (e.g., desktop PC, missile guidance
system, cloud server) would a scheduler like EDF be a better fit than CFS,
and why?

SDB OS Appendix 1/8 =

Quick Quiz: Real-Time & Modern Scheduling Il

Think & Discuss

Formulate your answers before reviewing the solutions or discussing with
peers.

SDB OS Appendix 2/8 mm

Exercise: Real-Time Schedulability Analysis |

Part 1: RMS Schedulability Check
Tasks: (Execution Time C;, Period T;)

0 Task A: C4 =2, To=5
o Task B: Cg =1, Tg =4
o0 Task C: Cc =1, Tc =10
Task:
@ Calculate the total CPU utilization (U) for this set of tasks.
@ Calculate the RMS schedulability bound for n = 3 tasks.

@ Based on the RMS schedulability test, can these tasks be guaranteed to be
scheduled by RMS? Show your calculations.

@ What are the RMS priorities for Task A, B, and C?

SDB OS Appendix 3/8 mm

Exercise: Real-Time Schedulability Analysis I

Part 2: Conceptual Comparison
Scenario: A new game console OS needs to be designed. It handles high-priority

game rendering processes, background downloads, and occasional real-time voice
chat.

Task:
@ Would a pure FCFS scheduler be suitable? Why or why not?

@ Would a pure EDF scheduler be a good choice for *all* tasks? Discuss
potential benefits and drawbacks in this mixed environment.

@ Propose a hybrid scheduling approach (e.g., using concepts from MLQ,
Priority, and fairness) that could effectively manage these diverse workloads.
Justify your proposal.

SDB OS Appendix 4 /8 wewm

Exercise: Real-Time Schedulability Analysis IlI

Reminder

Remember to clearly state your assumptions and show all steps for calcu-
lations.

SDB OS Appendix 5 /8 mwwmmm

Advanced Topics to Explore |

Delving Deeper into Real-Time and Advanced Schedulers

l. Real-Time Scheduling Extensions

o Resource Sharing in RTOS: Understanding solutions like Priority
Inheritance Protocol (PIP) and Priority Ceiling Protocol (PCP) to
prevent priority inversion.

o Schedulability Analysis for Aperiodic Tasks: Techniques for
integrating sporadic or aperiodic tasks into periodic real-time
schedules (e.g., deferrable server, sporadic server).

o Multi-Core Real-Time Scheduling: Challenges and approaches for
guaranteeing deadlines across multiple CPU cores.

SDB OS Appendix 6 /8 mwm——

Advanced Topics to Explore Il

Il. Advanced Aspects of General-Purpose Schedulers

o Linux CFS Group Scheduling (‘cgroups‘): How CFS can apply
fairness policies not just to individual tasks but to groups of tasks
(e.g., ensuring a user or VM gets a certain CPU share).

o Windows Thread Affinity & Processor Groups: How threads can
be bound to specific CPUs and how Windows handles systems with
more than 64 logical processors.

o Scheduler Interfacing (Syscalls): Deeper look at system calls like
‘sched_setscheduler’, ‘setpriority’ (Linux) and ‘SetThreadPriority*
(Windows) for manipulating scheduling parameters from user space.

SDB OS Appendix 7 /8 ww—

Advanced Topics to Explore 1l

I1l. Emerging & Specialized Scheduling Areas

o Energy-Aware / Power-Aware Scheduling: Algorithms that
consider CPU frequency scaling (DVFS) and core parking to optimize
power consumption, crucial for mobile and data centers.

o Virtual Machine Schedulers: How hypervisors (like VMware ESXi,
KVM) schedule virtual CPUs onto physical CPUs.

o Quantum-Leap Schedulers (e.g., Lottery Scheduling, Stride
Scheduling): Alternative fairness-based schedulers for specific
contexts.

SDB OS Appendix 8 /8 mmmmm—

	Summary
	Appendix
	Appendix

