
Priority Scheduling and Multilevel Queues
Week 6

SDB

Autumn 2025



Agenda: Advanced CPU Scheduling Strategies

Beyond the Basics: Fairer and Finer-Grained Control

1 Priority Scheduling (Prioritizing critical tasks)

2 Starvation & Aging (The challenge of fairness)

3 Multilevel Queue Scheduling (Organizing diverse workloads)

4 Real-World Architectures (How OSes actually do it)

5 Summary & Discussion

Think Ahead: Balancing Power & Fairness

How can an operating system ensure that important tasks (e.g., system
processes, interactive applications) get preferential treatment, while still
guaranteeing that less critical tasks (e.g., background batch jobs) eventually
get their turn? What are the inherent risks of such prioritization?

SDB OS 1 / 23



Agenda: Advanced CPU Scheduling Strategies

Beyond the Basics: Fairer and Finer-Grained Control

1 Priority Scheduling (Prioritizing critical tasks)

2 Starvation & Aging (The challenge of fairness)

3 Multilevel Queue Scheduling (Organizing diverse workloads)

4 Real-World Architectures (How OSes actually do it)

5 Summary & Discussion

Think Ahead: Balancing Power & Fairness

How can an operating system ensure that important tasks (e.g., system
processes, interactive applications) get preferential treatment, while still
guaranteeing that less critical tasks (e.g., background batch jobs) eventually
get their turn? What are the inherent risks of such prioritization?

SDB OS 1 / 23



Priority Scheduling: Prioritizing CPU Access I

Definition
Each process is assigned a priority number. The CPU is always allocated to the
process with the highest priority among those available. (Convention: Typically,

a smaller priority number means higher priority, e.g., Priority 1 > Priority 2 >
Priority 3).

Types of Priority Scheduling:

Non-Preemptive: If a process starts executing, it completes its CPU burst
even if a higher-priority process arrives later.

Preemptive: If a new process arrives (or an existing one becomes ready)
with a higher priority than the currently running process, the CPU is
immediately preempted and allocated to the higher-priority process.

SDB OS 2 / 23



Priority Scheduling: Prioritizing CPU Access II

Pros & Cons:

Pros:

▶ Allows critical or time-sensitive processes to execute quickly.
▶ Good for real-time systems where certain tasks must meet deadlines.

Cons:

▶ Starvation: Low-priority processes may wait indefinitely if there’s a
continuous stream of higher-priority processes.

▶ Can lead to unpredictable system behavior if not managed carefully
(e.g., a critical but lower-priority background task might be delayed).

SDB OS 3 / 23



Preemptive Priority Scheduling: Example & Analysis I
Processes (Arrival Time, Burst Time, Priority):

P1: (0, 5, 3) (Arrives at 0, needs 5 units, Priority 3)

P2: (1, 3, 1) (Arrives at 1, needs 3 units, Priority 1 - HIGHEST)

P3: (2, 4, 2) (Arrives at 2, needs 4 units, Priority 2)

(Convention: Lower priority number = Higher priority)
Execution Trace & Gantt Chart Construction:

Time 0: P1 arrives, starts executing (P1 remaining = 5).

Time 1: P2 arrives (Priority 1). P2 (Prio 1) ¿ P1 (Prio 3). P2 preempts P1. P1
suspended.

Time 1-4: P2 executes for its full burst (3 units). P2 completes at Time 4.

Time 4: P1 (remaining 4, Prio 3) and P3 (arrived at 2, burst 4, Prio 2) are ready. P3
(Prio 2) ¿ P1 (Prio 3). P3 selected.

Time 4-8: P3 executes for its full burst (4 units). P3 completes at Time 8.

Time 8: Only P1 (remaining 4, Prio 3) is ready. P1 resumes.

Time 8-12: P1 executes for its remaining burst (4 units). P1 completes at Time 12.

SDB OS 4 / 23



Preemptive Priority Scheduling: Example & Analysis II

Gantt Chart (Execution Order: P1 → P2 → P3 → P1):

0 1 4 8 12

P1 P2 P3 P1

Performance Metrics Calculation:

Process AT BT Prio CT TAT (CT-AT) WT (TAT-BT) RT (First Start-AT)
P1 0 5 3 12 12 - 0 = 12 12 - 5 = 7 0 - 0 = 0
P2 1 3 1 4 4 - 1 = 3 3 - 3 = 0 1 - 1 = 0
P3 2 4 2 8 8 - 2 = 6 6 - 4 = 2 4 - 2 = 2

Average Turnaround Time: (12 + 3 + 6)/3 = 7.0 units
Average Waiting Time: (7 + 0 + 2)/3 = 3.0 units

Average Response Time: (0 + 0 + 2)/3 = 0.67 units

SDB OS 5 / 23



Starvation and Aging: Addressing Priority’s Flaw I

Starvation (Indefinite Blocking):

Occurs when a low-priority process continuously waits for the CPU because
higher-priority processes keep arriving or becoming ready.

The low-priority process may never get to execute, even if it’s runnable,
essentially being ”starved” of resources.

A critical problem in systems relying heavily on fixed-priority scheduling.

Aging (The Solution):

A technique to prevent starvation by gradually increasing the priority of
processes that wait in the Ready Queue for a long time.

As time passes, a waiting process’s priority steadily improves, eventually
reaching a point where it becomes the highest priority and gets scheduled.

This ensures that even low-priority processes eventually get a chance to run,
preventing indefinite blocking.

SDB OS 6 / 23



Starvation and Aging: Addressing Priority’s Flaw II

Aging Formula (Conceptual Example):

New Priority = Current Priority− (α× Time in Ready Queue)

Where α (alpha) is the aging rate (a constant determining how quickly priority

increases). (Assumes lower number = higher priority. If higher number = higher

priority, then it would be ‘+‘ instead of ‘-‘.)

SDB OS 7 / 23



Multilevel Queue Scheduling: Tailoring Scheduling to
Process Types I

Motivation:

Not all processes are alike; they have different characteristics (e.g.,
interactive vs. batch) and different scheduling needs.

A single scheduling algorithm often isn’t optimal for all types of processes.

Concept:

Processes are permanently partitioned into different separate queues based
on their characteristics or type.

Each queue typically has its own specific scheduling algorithm (e.g., RR
for foreground, FCFS for background).

No process ever moves between queues.

SDB OS 8 / 23



Multilevel Queue Scheduling: Tailoring Scheduling to
Process Types II
Typical Queue Classifications:

System Processes: OS tasks, highest priority.

Interactive Processes: Foreground applications, respond quickly to user
input (e.g., text editor).

Interactive Batch Processes: Background, but still need some
interactivity (e.g., database queries).

Batch Processes: Long-running, non-interactive (e.g., compilers, scientific
simulations).

Pros & Cons:

Pros: Tailored scheduling for different process types, better overall system
performance.

Cons: Potential for starvation of lower-priority queues (if not managed by
time slicing between queues).

SDB OS 9 / 23



Multilevel Queue (MLQ) Scheduler (Illustration)

Static Queue Allocation

In a Multilevel Queue scheduler, processes are permanently assigned
to a queue upon entry. They cannot move between queues. Each
queue may have its own scheduling algorithm.

Queue 1: System Processes (RR / Priority)

Queue 2: Interactive Processes (RR)

Queue 3: Batch Processes (FCFS)

Highest Priority

Medium Priority

Lowest Priority

Inter-Queue
Scheduling:

Fixed Priority
OR

Time Slicing

CPU Scheduler / Dispatcher

CPU

Allocates CPU

SDB OS 10 / 23



Multilevel Queue: Inter-Queue Scheduling Methods

How the CPU is allocated among the different queues:

Fixed-Priority Preemptive Scheduling:

▶ Each queue has an absolute priority over lower-priority queues.
▶ A process in a higher-priority queue will always be executed before any

process in a lower-priority queue.
▶ Risk: Can lead to starvation for processes in low-priority queues if

higher-priority queues are continuously busy.

Time Slicing Between Queues:

▶ Each queue receives a certain percentage of the CPU time.
▶ For example, the interactive queue might get 80% of CPU time, and

the batch queue gets 20%.
▶ Within its allocated time slice, each queue can then schedule its

processes using its own algorithm.
▶ Benefit: Ensures that lower-priority queues still get some CPU time,

preventing starvation and providing better fairness.

SDB OS 11 / 23



Multilevel Feedback Queue Scheduling: Adapting to
Process Behavior I

Motivation:

A process’s behavior can change over time (e.g., an interactive job can
become CPU-bound).

The static nature of Multilevel Queue (MLQ) scheduling can lead to
inefficient scheduling and starvation.

Concept:

Processes are initially placed in a high-priority queue.

The key difference from MLQ is the feedback mechanism: a process can
move between queues based on its behavior.

MLFQ aims to separate processes into CPU-bound (long-running) and
I/O-bound (interactive) types automatically.

SDB OS 12 / 23



Multilevel Feedback Queue Scheduling: Adapting to
Process Behavior II

Core Rules of MLFQ:

Rule 1: If a job in a higher-priority queue is ready, it runs first.

Rule 2: Jobs within the same queue are scheduled using a Round Robin algorithm.

Rule 3: A new job enters the highest-priority queue.

Rule 4: If a job uses its entire time quantum, it is demoted to the next lower-priority
queue.

Rule 5: If a job gives up the CPU before its quantum is finished (e.g., for I/O), its priority
may remain the same or be promoted.

Pros & Cons:

Pros: Excellent for interactive jobs, prevents starvation by demoting
CPU-intensive processes, dynamically adapts.

Cons: Complex to implement, can be ”gamed” by processes that
manipulate their behavior.

SDB OS 13 / 23



MLFQ: The Role of Feedback (Illustration)

Dynamic Queue Movement

MLFQ builds on the Multilevel Queue concept by allowing processes
to move between queues. This ”feedback” is crucial for dynamically
adapting to process behavior.

Queue 1: High Priority (RR)

Queue 2: Medium Priority (RR)

Queue 3: Low Priority (FCFS)

CPU Scheduler / Dispatcher

CPU

Allocates CPU

Demotion (uses
full quantum)

Demotion (uses
full quantum)

Promotion
(yields early)

Promotion
(yields early)

Inter-Queue
Scheduling:

Fixed Priority
OR

Time Slicing

SDB OS 14 / 23



MLQ vs. MLFQ: A Quick Comparison

The Key Difference

The main distinction lies in the ability of processes to change queues.

Feature Multilevel Queue (MLQ) Multilevel Feedback
Queue (MLFQ)

Queue Movement Static: Processes are per-
manently assigned to a
queue.

Dynamic: Processes can
move between queues
(feedback).

Flexibility Less flexible. Cannot adapt
to changing process behav-
ior.

Highly flexible. Adapts
to prioritize interactive vs.
CPU-bound jobs.

Starvation A low-priority queue may
starve if high-priority
queues are always busy.

Reduces starvation by de-
moting long-running pro-
cesses, giving others a
chance.

SDB OS 15 / 23



MLQ vs. MLFQ: A Quick Comparison

The Key Difference

The main distinction lies in the ability of processes to change queues.

Feature Multilevel Queue (MLQ) Multilevel Feedback
Queue (MLFQ)

Queue Movement Static: Processes are per-
manently assigned to a
queue.

Dynamic: Processes can
move between queues
(feedback).

Flexibility Less flexible. Cannot adapt
to changing process behav-
ior.

Highly flexible. Adapts
to prioritize interactive vs.
CPU-bound jobs.

Starvation A low-priority queue may
starve if high-priority
queues are always busy.

Reduces starvation by de-
moting long-running pro-
cesses, giving others a
chance.

SDB OS 15 / 23



Linux and Windows Schedulers I
Linux CFS (Completely Fair Scheduler)

Core Philosophy: Aims for perfect fairness by giving each process an equal
share of the processor’s time, rather than relying on strict priority levels.

Mechanism: The scheduler uses a virtual runtime (vruntime) counter for
each process. This value is a normalized measure of a process’s CPU time,
weighted by its priority (nice value). A lower nice value (higher priority)
causes vruntime to advance more slowly.

Implementation: All runnable processes are stored in a red-black tree, a
self-balancing data structure. The scheduler always selects the leftmost node
(the one with the lowest vruntime) to run next, ensuring that processes
that have ”fallen behind” in CPU time get their turn.

Key Influencing Factors:

▶ vruntime (virtual runtime): The primary factor; the process with the lowest
vruntime is always scheduled next.

▶ Priority (nice value): A lower nice value (higher priority) causes vruntime to
advance more slowly, effectively giving the process more CPU time.

▶ I/O Wait Time: Tasks that spend a lot of time waiting for I/O have a low
vruntime and are thus heavily prioritized when they become runnable.

SDB OS 16 / 23



Linux and Windows Schedulers II

Windows OS Scheduler

Core Philosophy: A preemptive, priority-based approach that prioritizes
responsiveness and provides predictable performance for applications.

Mechanism: It uses a multilevel queue with 32 priority levels. The highest
16 are for real-time threads, and the lower 16 are for dynamic (variable)
threads. The scheduler always runs the highest-priority thread that is ready.

Responsiveness: The scheduler employs a mechanism called priority
boosting. A thread that has been awakened from a wait state (e.g., waiting
for user input or I/O) receives a temporary boost in priority to ensure it runs
immediately, making the system feel highly responsive.

Key Influencing Factors:

▶ Priority Level: Processes are assigned one of 32 priority levels; higher-priority
threads preempt lower-priority ones.

▶ I/O Events: Threads waiting on I/O completion receive a temporary priority boost
to ensure they run immediately upon receiving data, making the system feel fast.

▶ Foreground Status: The active, user-facing application receives a higher priority
boost than background applications, which is a major factor in its scheduling.

SDB OS 17 / 23



Mobile and Desktop Schedulers I

Android (modified Linux kernel)
Foundation: Android is built on the Linux kernel, so its scheduler is an
extension of the Completely Fair Scheduler (CFS).
Mobile Optimizations: The scheduler is augmented with mobile-specific
logic to manage power and user experience. It categorizes processes into
groups like foreground, background, and real-time.
Key Differentiator: Foreground tasks (the app currently visible to the
user) are assigned a much higher priority than background tasks. This
ensures that the active application remains smooth and responsive while
conserving power by throttling background processes.
Key Influencing Factors:

▶ Energy Usage: A critical factor. The scheduler uses Energy Aware Scheduling
(EAS) to make decisions, preferring to run tasks on more efficient cores
(big.LITTLE architecture).

▶ App State: An app’s state (e.g., foreground vs. background) is the primary factor.
Foreground tasks receive higher priority and resources.

▶ Power-Saving Modes: When the device is in Doze mode or has a low battery, the
scheduler severely restricts background activity and network access to extend
battery life.

SDB OS 18 / 23



Mobile and Desktop Schedulers II
macOS (Darwin kernel)

Foundation: The macOS scheduler is a preemptive, multilevel feedback
queue scheduler that is part of the Darwin kernel.
Key Features: It is highly tuned for desktop and laptop environments,
balancing power efficiency with a smooth, interactive user interface. It
assigns processes to queues based on their priority and how much CPU time
they’ve consumed.
Concurrency API: It provides a high-level API called Grand Central
Dispatch (GCD). GCD allows developers to define blocks of code to run
concurrently without manually managing threads, abstracting away much of
the underlying scheduling complexity.
Key Influencing Factors:

▶ Interactivity: User-facing applications and interactive events are given a high
priority to maintain a smooth user experience.

▶ Power Efficiency: The scheduler makes decisions to maximize battery life, for
example, by consolidating tasks and scheduling them on lower-power cores when
possible.

▶ Task Type: Tasks are classified by APIs like Grand Central Dispatch (GCD),
allowing the scheduler to prioritize work based on whether it’s user-initiated,
background, or real-time.

SDB OS 19 / 23



Summary: Real-World Schedulers Comparison

A comparison of modern scheduling philosophies:
OS Core Model Primary Goal
Linux (CFS) Fair-share scheduler Aims for perfect fairness

among all processes.
Windows Preemptive, priority-based Prioritizes responsiveness for

interactive tasks.
Android Modified CFS Optimizes for power and

user experience on mobile.
macOS Multilevel feedback queue Balances interactivity and

power efficiency on desktop.

SDB OS 20 / 23



Discussion Prompt: Designing for Performance & Fairness

Scenario: You are designing the CPU scheduler for a new general-purpose
operating system (like a desktop OS).

Consider these questions:

Question 1: Should user-level I/O-heavy applications (e.g., web browser,
music player) be placed in higher priority queues compared to CPU-heavy
applications (e.g., video encoder, large compilation)? Why or why not?

▶ Think about user perceived responsiveness vs. overall CPU utilization.

Question 2: Is starvation ever acceptable for certain types of background
jobs? Under what circumstances might it be tolerable, and when is it a
critical failure?

Question 3: How would you balance the benefits of strict priority for critical
system tasks with the need for fair CPU allocation to all user processes?
What mechanisms would you employ?

SDB OS 21 / 23



Summary: Advanced Scheduling Insights
Key Takeaways from Week 6:

Priority Scheduling offers fine-grained control over CPU allocation, but its
inherent risk is starvation for lower-priority tasks.

Aging is a crucial mechanism to prevent starvation by dynamically
increasing the priority of waiting processes.

Multilevel Queue Scheduling organizes processes into different classes,
allowing for specialized scheduling strategies per class, enhancing system
efficiency.

Modern OS schedulers (e.g., Linux CFS, Windows) are complex, hybrid
systems that combine elements of priority, time-sharing, and feedback
mechanisms to optimize for various goals like fairness, responsiveness, and
throughput.

Reflection Prompt

Consider a scenario where a critical, high-priority system process suddenly enters an
infinite loop, consuming 100% CPU. How would different scheduling algorithms (FCFS,
RR, Priority with/without aging) behave? What would be the impact on other processes
and the overall system?

SDB OS Summary 22 / 23



Summary: Advanced Scheduling Insights
Key Takeaways from Week 6:

Priority Scheduling offers fine-grained control over CPU allocation, but its
inherent risk is starvation for lower-priority tasks.

Aging is a crucial mechanism to prevent starvation by dynamically
increasing the priority of waiting processes.

Multilevel Queue Scheduling organizes processes into different classes,
allowing for specialized scheduling strategies per class, enhancing system
efficiency.

Modern OS schedulers (e.g., Linux CFS, Windows) are complex, hybrid
systems that combine elements of priority, time-sharing, and feedback
mechanisms to optimize for various goals like fairness, responsiveness, and
throughput.

Reflection Prompt

Consider a scenario where a critical, high-priority system process suddenly enters an
infinite loop, consuming 100% CPU. How would different scheduling algorithms (FCFS,
RR, Priority with/without aging) behave? What would be the impact on other processes
and the overall system?

SDB OS Summary 22 / 23



Next Week Preview: Real-Time Systems and Advanced
Schedulers
Looking Ahead: Deeper Dives into Specialized Scheduling

Real-Time Scheduling Algorithms: Detailed look into Rate Monotonic
(RM) and Earliest Deadline First (EDF) and their applicability.

Linux CFS Internals: A more in-depth exploration of how the Completely
Fair Scheduler works, including its red-black tree implementation and virtual
runtime concept.

Distributed Scheduling Concepts: Brief overview of challenges and
approaches in multi-node environments.

Comprehensive CPU Scheduling Revision: Consolidating all concepts
learned from Week 5 & 6.

Prep Tip for Next Session

Review your understanding of preemptive scheduling and the various
scheduling criteria (especially response time and turnaround time). Think
about how strict deadlines might change scheduling priorities.

SDB OS Summary 23 / 23



Next Week Preview: Real-Time Systems and Advanced
Schedulers
Looking Ahead: Deeper Dives into Specialized Scheduling

Real-Time Scheduling Algorithms: Detailed look into Rate Monotonic
(RM) and Earliest Deadline First (EDF) and their applicability.

Linux CFS Internals: A more in-depth exploration of how the Completely
Fair Scheduler works, including its red-black tree implementation and virtual
runtime concept.

Distributed Scheduling Concepts: Brief overview of challenges and
approaches in multi-node environments.

Comprehensive CPU Scheduling Revision: Consolidating all concepts
learned from Week 5 & 6.

Prep Tip for Next Session

Review your understanding of preemptive scheduling and the various
scheduling criteria (especially response time and turnaround time). Think
about how strict deadlines might change scheduling priorities.

SDB OS Summary 23 / 23



Outline

1 Appendix



Quick Quiz: Advanced Scheduling Concepts I

Test Your Conceptual Understanding:

1 Scenario: In a preemptive priority scheduling system where lower numbers
mean higher priority, Process A (Prio 5, Burst 10) is running. Process B
(Prio 2, Burst 8) arrives. What happens?

▶ What is the term for this action?
▶ What specific mechanism allows this to happen?

2 True/False: Multilevel Queue Scheduling automatically prevents starvation
of low-priority queues. Justify your answer.

3 Define: How does ”aging” specifically address the problem of starvation?
Provide a simple, conceptual example.

4 Application: Why would a real-time operating system (RTOS) for an
airplane’s control system prefer a fixed-priority scheduling method over
Round Robin?

SDB OS Appendix 1 / 11



Quick Quiz: Advanced Scheduling Concepts II

Think & Discuss

Formulate your answers before reviewing the solutions or discussing with
peers.

SDB OS Appendix 2 / 11



Exercise: Priority Scheduling & MLQ Scenarios I

Part 1: Non-Preemptive Priority Calculation
Processes (Arrival Time, Burst Time, Priority): (Lower priority number =
Higher priority)

P1: (0, 7, 4)

P2: (1, 3, 2)

P3: (2, 5, 3)

P4: (3, 2, 1)

Task: Draw the Gantt chart for Non-Preemptive Priority scheduling. Calculate
the Completion Time, Turnaround Time, and Waiting Time for each process.
Then, calculate the average Turnaround Time and average Waiting Time.

Part 2: Multilevel Queue Scenario
Imagine a system with two queues:

Queue 1 (High Priority): For Interactive processes (uses Round Robin,
Quantum=2)

SDB OS Appendix 3 / 11



Exercise: Priority Scheduling & MLQ Scenarios II

Queue 2 (Low Priority): For Batch processes (uses FCFS)

Inter-Queue Scheduling: Queue 1 has absolute fixed priority over Queue 2.
Processes:

Interactive PA: Arrival=0, Burst=5

Interactive PB : Arrival=1, Burst=3

Batch PC : Arrival=0, Burst=10

Task:

1 Describe the execution flow of these processes. Which process runs first?
When does it get preempted/blocked?

2 Will Batch PC ever execute if PA and PB continuously generate new
interactive tasks (assume they finish and re-enter Queue 1)? Explain your
reasoning.

3 How could the inter-queue scheduling be changed to ensure Batch PC

eventually runs, without completely sacrificing interactive responsiveness?

SDB OS Appendix 4 / 11



Exercise: Priority Scheduling & MLQ Scenarios III

Reminder

Remember to trace time step-by-step, especially when preemption or new
arrivals occur.

SDB OS Appendix 5 / 11



Aging Formula Variations I

Beyond the basic linear model, here are other conceptual variations for
implementing aging to prevent starvation.

Variation 1: Simple Incremental Aging

Formula (Conceptual):

New Priority = Current Priority− Constant

(Applied every T time units to all processes in the ready queue.)

Description: Instead of a continuous update, the kernel periodically
scans the ready queue and boosts the priority of every waiting
process by a fixed value. This is simpler to implement but might not
be as fine-grained as the continuous formula.

SDB OS Appendix 6 / 11



Aging Formula Variations II

Variation 2: Non-Linear Aging

Formula (Conceptual):

New Priority = Current Priority− (α× Time in Ready Queue2)

Description: This approach gives a much larger priority boost to a
process that has been waiting for a very long time. By using a
squared term (or other non-linear function), the priority of a process
increases at an accelerating rate the longer it waits, ensuring it
eventually runs.

SDB OS Appendix 7 / 11



Aging Formula Variations III

Variation 3: Dynamic Priority Based on Behavior

Formula (Conceptual):

New Priority = Base Priority±Adjustment for recent CPU/I/O usage

Description: In more advanced schedulers, the priority is not only
adjusted for waiting time but also based on the process’s recent
behavior. Interactive (I/O-bound) processes are rewarded with a
higher priority, while CPU-bound processes are penalized. This
balances responsiveness and efficiency.

SDB OS Appendix 8 / 11



Advanced Topics to Explore: Deeper Dives in CPU
Scheduling I

Expanding Your Horizon Beyond This Week’s Fundamentals

I. Real-Time System Scheduling (RTOS)

Rate Monotonic Scheduling (RMS): A static-priority, preemptive
algorithm for periodic tasks, where priority is assigned based on the
inverse of the period (shorter period = higher priority).

Earliest Deadline First (EDF): A dynamic-priority, preemptive
algorithm where the process with the earliest absolute deadline is
scheduled next. (Optimal but more complex).

Priority Inversion: A critical problem in RTOS where a high-priority
task gets blocked by a lower-priority task, and solutions like Priority
Inheritance Protocol.

SDB OS Appendix 9 / 11



Advanced Topics to Explore: Deeper Dives in CPU
Scheduling II

II. Advanced Multi-Core & Modern OS Schedulers

Linux Completely Fair Scheduler (CFS) Deep Dive:
Understanding its core principles (red-black tree for run queue,
‘vruntime‘ concept, group scheduling).

Windows Scheduler Internals: Exploring its 32-level priority
scheme, quantum adjustments, and how it handles different types of
threads (e.g., foreground vs. background, I/O priority).

Processor Affinity & NUMA Awareness: How schedulers try to
keep processes on the same CPU or within the same NUMA node to
improve cache performance and memory access.

Load Balancing Strategies: Techniques used to distribute workload
evenly across multiple CPU cores (e.g., push migration, pull
migration).

SDB OS Appendix 10 / 11



Advanced Topics to Explore: Deeper Dives in CPU
Scheduling III

III. Other Related Scheduling Concepts

I/O Scheduling / Disk Scheduling: Algorithms like FCFS, SSTF
(Shortest Seek Time First), SCAN, C-SCAN, LOOK, C-LOOK for
optimizing disk head movement.

Energy-Aware Scheduling: Techniques used in mobile and
embedded systems to balance performance with power consumption.

Thread Scheduling vs. Process Scheduling: Understanding the
nuances when scheduling threads within processes, especially
kernel-level vs. user-level threads.

SDB OS Appendix 11 / 11


	Summary
	Appendix
	Appendix


