
CPU Scheduling Algorithms I
Week 5

SDB

Autumn 2025



Agenda: The Art of CPU Scheduling
Deciding Who Gets the CPU and When

1 Scheduling Criteria & Goals (What do we optimize for?)

2 FCFS: First-Come, First-Served (Simplicity, but with a catch)

3 SJF: Shortest Job First (Optimality vs. Practicality)

4 Round Robin (RR) (Fairness in Time-Sharing)

5 Algorithm Comparison & Evaluation (Understanding the Trade-offs)

6 Summary & Discussion

Think Ahead: Resource Allocation

In a multi-process environment, many processes are ready to run, but there’s
only one CPU (for a single-core system). How does the OS decide which
process runs next? What are the implications of different decision-making
strategies on system performance and user experience?

SDB OS 1 / 13



Agenda: The Art of CPU Scheduling
Deciding Who Gets the CPU and When

1 Scheduling Criteria & Goals (What do we optimize for?)

2 FCFS: First-Come, First-Served (Simplicity, but with a catch)

3 SJF: Shortest Job First (Optimality vs. Practicality)

4 Round Robin (RR) (Fairness in Time-Sharing)

5 Algorithm Comparison & Evaluation (Understanding the Trade-offs)

6 Summary & Discussion

Think Ahead: Resource Allocation

In a multi-process environment, many processes are ready to run, but there’s
only one CPU (for a single-core system). How does the OS decide which
process runs next? What are the implications of different decision-making
strategies on system performance and user experience?

SDB OS 1 / 13



Scheduling Criteria: What Makes a ”Good” Schedule?

CPU Utilization: Keep the CPU as busy as possible (range 0-100%).

Throughput: Number of processes completed per unit time. High throughput means
more work done.

CPU Burst Time: The amount of time a process needs to execute on the CPU before it
either terminates or performs an I/O operation. This is a key characteristic of a process
and a crucial factor for many scheduling algorithms (e.g., Shortest-Job-First).

Turnaround Time (TAT): Total time from process arrival to completion (Waiting Time +
Execution Time). Minimize this.

Waiting Time (WT): Total time a process spends in the Ready Queue, waiting for the
CPU. Minimize this.

Response Time (RT): Time from a request submitted until the first response is produced
(for interactive systems). Minimize this for user satisfaction.

Fairness: Each process gets a fair share of the CPU over time. Prevents starvation.

The Trade-off Challenge

It is often impossible to optimize all criteria simultaneously. For example, optimizing
average turnaround time might lead to poor response time for some processes. OS
designers must choose which criteria to prioritize based on system goals.

SDB OS 2 / 13



Scheduling Criteria: What Makes a ”Good” Schedule?

CPU Utilization: Keep the CPU as busy as possible (range 0-100%).

Throughput: Number of processes completed per unit time. High throughput means
more work done.

CPU Burst Time: The amount of time a process needs to execute on the CPU before it
either terminates or performs an I/O operation. This is a key characteristic of a process
and a crucial factor for many scheduling algorithms (e.g., Shortest-Job-First).

Turnaround Time (TAT): Total time from process arrival to completion (Waiting Time +
Execution Time). Minimize this.

Waiting Time (WT): Total time a process spends in the Ready Queue, waiting for the
CPU. Minimize this.

Response Time (RT): Time from a request submitted until the first response is produced
(for interactive systems). Minimize this for user satisfaction.

Fairness: Each process gets a fair share of the CPU over time. Prevents starvation.

The Trade-off Challenge

It is often impossible to optimize all criteria simultaneously. For example, optimizing
average turnaround time might lead to poor response time for some processes. OS
designers must choose which criteria to prioritize based on system goals.

SDB OS 2 / 13



Additional CPU Scheduling Considerations

Beyond the primary goals and metrics, a good scheduler must also account for these practical
considerations and parameters.

Scheduler Overhead: The amount of time and resources (CPU cycles, memory) the
scheduler itself consumes to make a decision and perform a context switch. A good
scheduler should be fast and efficient, minimizing overhead so that more CPU time can be
spent on executing user processes.

Starvation: A specific problem that arises from a lack of fairness. It occurs when a
low-priority process is continuously prevented from gaining access to the CPU by
higher-priority processes, causing it to never finish execution. It’s a key consideration
when designing priority-based scheduling algorithms.

Priority: This is a numerical or categorical value assigned to a process that the scheduler
uses as a decision-making factor. It’s not a performance metric to be optimized, but a
crucial input parameter for many scheduling policies, such as Priority Scheduling and
Multilevel Feedback Queue.

Latency: A broader term for delay. While ”Response Time” specifically measures the
delay for interactive tasks, other forms of latency, like I/O latency, are also important,
especially in real-time or embedded systems. A good scheduler tries to minimize latency
where it matters most.

SDB OS 3 / 13



FCFS: First-Come, First-Served (FIFO Scheduling)
Concept: Processes are scheduled in the exact order they arrive in the Ready
Queue, similar to a queue at a bank.

Characteristics:

Non-preemptive: Once a process starts executing, it runs to completion (or
blocks for I/O) without interruption.

Simple and easy to implement: Relies on a simple FIFO queue.

Pros & Cons:

Pros: Simple, fair in a temporal sense (first in, first out).

Cons:

▶ High Average Waiting Time: Especially if a long process arrives
before several short ones.

▶ Convoy Effect: A short process gets stuck behind a long process,
leading to low CPU utilization and poor performance for the short
process. This scenario is most common when a long CPU-bound
process is followed by multiple I/O-bound processes.

SDB OS 4 / 13



FCFS: First-Come, First-Served (FIFO Scheduling)
Concept: Processes are scheduled in the exact order they arrive in the Ready
Queue, similar to a queue at a bank.

Characteristics:

Non-preemptive: Once a process starts executing, it runs to completion (or
blocks for I/O) without interruption.

Simple and easy to implement: Relies on a simple FIFO queue.

Pros & Cons:

Pros: Simple, fair in a temporal sense (first in, first out).

Cons:

▶ High Average Waiting Time: Especially if a long process arrives
before several short ones.

▶ Convoy Effect: A short process gets stuck behind a long process,
leading to low CPU utilization and poor performance for the short
process. This scenario is most common when a long CPU-bound
process is followed by multiple I/O-bound processes.

SDB OS 4 / 13



FCFS Example & Performance Analysis
Processes (Arrival Time, Burst Time):

P1: (0, 5) (Arrives at 0, needs 5 units CPU)

P2: (1, 3) (Arrives at 1, needs 3 units CPU)

P3: (2, 8) (Arrives at 2, needs 8 units CPU)

Gantt Chart (Execution Order: P1 → P2 → P3):

0 5 8 16

P1 P2 P3

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 5 5 5 - 0 = 5 5 - 5 = 0
P2 1 3 8 8 - 1 = 7 7 - 3 = 4
P3 2 8 16 16 - 2 = 14 14 - 8 = 6

Average Turnaround Time: (5 + 7 + 14)/3 = 8.67 units Average Waiting
Time: (0 + 4 + 6)/3 = 3.33 units

SDB OS 5 / 13



FCFS Example & Performance Analysis
Processes (Arrival Time, Burst Time):

P1: (0, 5) (Arrives at 0, needs 5 units CPU)

P2: (1, 3) (Arrives at 1, needs 3 units CPU)

P3: (2, 8) (Arrives at 2, needs 8 units CPU)

Gantt Chart (Execution Order: P1 → P2 → P3):

0 5 8 16

P1 P2 P3

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 5 5 5 - 0 = 5 5 - 5 = 0
P2 1 3 8 8 - 1 = 7 7 - 3 = 4
P3 2 8 16 16 - 2 = 14 14 - 8 = 6

Average Turnaround Time: (5 + 7 + 14)/3 = 8.67 units Average Waiting
Time: (0 + 4 + 6)/3 = 3.33 units

SDB OS 5 / 13



FCFS Example & Performance Analysis
Processes (Arrival Time, Burst Time):

P1: (0, 5) (Arrives at 0, needs 5 units CPU)

P2: (1, 3) (Arrives at 1, needs 3 units CPU)

P3: (2, 8) (Arrives at 2, needs 8 units CPU)

Gantt Chart (Execution Order: P1 → P2 → P3):

0 5 8 16

P1 P2 P3

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 5 5 5 - 0 = 5 5 - 5 = 0
P2 1 3 8 8 - 1 = 7 7 - 3 = 4
P3 2 8 16 16 - 2 = 14 14 - 8 = 6

Average Turnaround Time: (5 + 7 + 14)/3 = 8.67 units Average Waiting
Time: (0 + 4 + 6)/3 = 3.33 units

SDB OS 5 / 13



FCFS Example & Performance Analysis
Processes (Arrival Time, Burst Time):

P1: (0, 5) (Arrives at 0, needs 5 units CPU)

P2: (1, 3) (Arrives at 1, needs 3 units CPU)

P3: (2, 8) (Arrives at 2, needs 8 units CPU)

Gantt Chart (Execution Order: P1 → P2 → P3):

0 5 8 16

P1 P2 P3

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 5 5 5 - 0 = 5 5 - 5 = 0
P2 1 3 8 8 - 1 = 7 7 - 3 = 4
P3 2 8 16 16 - 2 = 14 14 - 8 = 6

Average Turnaround Time: (5 + 7 + 14)/3 = 8.67 units Average Waiting
Time: (0 + 4 + 6)/3 = 3.33 units

SDB OS 5 / 13



SJF: Shortest Job First (Optimizing Waiting Time)
Concept: The process with the shortest CPU burst time is selected for execution
next.

Types of SJF:

Non-preemptive SJF: Once the CPU is allocated to a process, it cannot be
preempted until its CPU burst is completed.

Preemptive SJF (Shortest-Remaining-Time-First - SRTF): If a new
process arrives with a CPU burst time less than the remaining time of the
currently executing process, the CPU is preempted.

Pros & Cons:

Pros: Optimal – Gives the minimum average waiting time for a given set of
processes.

Cons:
▶ Impractical: Requires knowing the exact future CPU burst time in

advance, which is generally not possible. (Can be estimated using
exponential averaging of past bursts).

▶ Starvation: Long processes might never get to execute if there’s a
continuous stream of short processes.

SDB OS 6 / 13



SJF: Shortest Job First (Optimizing Waiting Time)
Concept: The process with the shortest CPU burst time is selected for execution
next.

Types of SJF:

Non-preemptive SJF: Once the CPU is allocated to a process, it cannot be
preempted until its CPU burst is completed.

Preemptive SJF (Shortest-Remaining-Time-First - SRTF): If a new
process arrives with a CPU burst time less than the remaining time of the
currently executing process, the CPU is preempted.

Pros & Cons:

Pros: Optimal – Gives the minimum average waiting time for a given set of
processes.

Cons:
▶ Impractical: Requires knowing the exact future CPU burst time in

advance, which is generally not possible. (Can be estimated using
exponential averaging of past bursts).

▶ Starvation: Long processes might never get to execute if there’s a
continuous stream of short processes.

SDB OS 6 / 13



SJF Example (Non-Preemptive)
Processes (Arrival Time, Burst Time):

P1: (0, 6)

P2: (2, 2)

P3: (4, 1)

Gantt Chart (Execution Order: P1 → P3 → P2):

0 6 7 9

P1 P3 P2

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 6 6 6 - 0 = 6 6 - 6 = 0
P2 2 2 9 9 - 2 = 7 7 - 2 = 5
P3 4 1 7 7 - 4 = 3 3 - 1 = 2

Average Turnaround Time: (6 + 7 + 3)/3 = 5.33 units Average Waiting
Time: (0 + 5 + 2)/3 = 2.33 units

SDB OS 7 / 13



SJF Example (Non-Preemptive)
Processes (Arrival Time, Burst Time):

P1: (0, 6)

P2: (2, 2)

P3: (4, 1)

Gantt Chart (Execution Order: P1 → P3 → P2):

0 6 7 9

P1 P3 P2

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 6 6 6 - 0 = 6 6 - 6 = 0
P2 2 2 9 9 - 2 = 7 7 - 2 = 5
P3 4 1 7 7 - 4 = 3 3 - 1 = 2

Average Turnaround Time: (6 + 7 + 3)/3 = 5.33 units Average Waiting
Time: (0 + 5 + 2)/3 = 2.33 units

SDB OS 7 / 13



SJF Example (Non-Preemptive)
Processes (Arrival Time, Burst Time):

P1: (0, 6)

P2: (2, 2)

P3: (4, 1)

Gantt Chart (Execution Order: P1 → P3 → P2):

0 6 7 9

P1 P3 P2

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 6 6 6 - 0 = 6 6 - 6 = 0
P2 2 2 9 9 - 2 = 7 7 - 2 = 5
P3 4 1 7 7 - 4 = 3 3 - 1 = 2

Average Turnaround Time: (6 + 7 + 3)/3 = 5.33 units Average Waiting
Time: (0 + 5 + 2)/3 = 2.33 units

SDB OS 7 / 13



SJF Example (Non-Preemptive)
Processes (Arrival Time, Burst Time):

P1: (0, 6)

P2: (2, 2)

P3: (4, 1)

Gantt Chart (Execution Order: P1 → P3 → P2):

0 6 7 9

P1 P3 P2

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 6 6 6 - 0 = 6 6 - 6 = 0
P2 2 2 9 9 - 2 = 7 7 - 2 = 5
P3 4 1 7 7 - 4 = 3 3 - 1 = 2

Average Turnaround Time: (6 + 7 + 3)/3 = 5.33 units Average Waiting
Time: (0 + 5 + 2)/3 = 2.33 units

SDB OS 7 / 13



SJF Example (Preemptive - SRTF)
Processes (Arrival Time, Burst Time):

P1: (0, 8)

P2: (1, 4)

P3: (2, 9)

P4: (3, 1)

Gantt Chart (Execution Order):

0 1 3 4 6 13 22

P1 P2 P4 P2 P1 P3

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 8 13 13 - 0 = 13 13 - 8 = 5
P2 1 4 6 6 - 1 = 5 5 - 4 = 1
P3 2 9 22 22 - 2 = 20 20 - 9 = 11
P4 3 1 4 4 - 3 = 1 1 - 1 = 0

Average Turnaround Time: (13 + 5 + 20 + 1)/4 = 39/4 = 9.75 units Average
Waiting Time: (5 + 1 + 11 + 0)/4 = 17/4 = 4.25 units

SDB OS 8 / 13



SJF Example (Preemptive - SRTF)
Processes (Arrival Time, Burst Time):

P1: (0, 8)

P2: (1, 4)

P3: (2, 9)

P4: (3, 1)

Gantt Chart (Execution Order):

0 1 3 4 6 13 22

P1 P2 P4 P2 P1 P3

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 8 13 13 - 0 = 13 13 - 8 = 5
P2 1 4 6 6 - 1 = 5 5 - 4 = 1
P3 2 9 22 22 - 2 = 20 20 - 9 = 11
P4 3 1 4 4 - 3 = 1 1 - 1 = 0

Average Turnaround Time: (13 + 5 + 20 + 1)/4 = 39/4 = 9.75 units Average
Waiting Time: (5 + 1 + 11 + 0)/4 = 17/4 = 4.25 units

SDB OS 8 / 13



SJF Example (Preemptive - SRTF)
Processes (Arrival Time, Burst Time):

P1: (0, 8)

P2: (1, 4)

P3: (2, 9)

P4: (3, 1)

Gantt Chart (Execution Order):

0 1 3 4 6 13 22

P1 P2 P4 P2 P1 P3

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 8 13 13 - 0 = 13 13 - 8 = 5
P2 1 4 6 6 - 1 = 5 5 - 4 = 1
P3 2 9 22 22 - 2 = 20 20 - 9 = 11
P4 3 1 4 4 - 3 = 1 1 - 1 = 0

Average Turnaround Time: (13 + 5 + 20 + 1)/4 = 39/4 = 9.75 units Average
Waiting Time: (5 + 1 + 11 + 0)/4 = 17/4 = 4.25 units

SDB OS 8 / 13



SJF Example (Preemptive - SRTF)
Processes (Arrival Time, Burst Time):

P1: (0, 8)

P2: (1, 4)

P3: (2, 9)

P4: (3, 1)

Gantt Chart (Execution Order):

0 1 3 4 6 13 22

P1 P2 P4 P2 P1 P3

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

P1 0 8 13 13 - 0 = 13 13 - 8 = 5
P2 1 4 6 6 - 1 = 5 5 - 4 = 1
P3 2 9 22 22 - 2 = 20 20 - 9 = 11
P4 3 1 4 4 - 3 = 1 1 - 1 = 0

Average Turnaround Time: (13 + 5 + 20 + 1)/4 = 39/4 = 9.75 units Average
Waiting Time: (5 + 1 + 11 + 0)/4 = 17/4 = 4.25 units

SDB OS 8 / 13



Round Robin (RR) Scheduling
Concept: Each process gets a small unit of CPU time, called a time quantum
(or time slice), typically 10 to 100 milliseconds. When a process’s quantum
expires, it is preempted and added to the end of the Ready Queue.

Characteristics:

Preemptive: Yes, based on time quantum.

Fair: Ensures that no process waits indefinitely (no starvation).

Suitable for time-sharing systems where responsiveness is crucial.

Pros & Cons:

Pros: Good response time, fair allocation of CPU, no starvation.

Cons:

▶ Context Switch Overhead: Frequent context switches increase
overhead (CPU is not doing useful work during switches).

▶ Performance depends heavily on Quantum Size:
⋆ Large Quantum: Approaches FCFS, poor response for short jobs.
⋆ Small Quantum: Increases context switch overhead, may reduce

overall throughput. An optimal quantum is typically found between
80% of CPU bursts.

SDB OS 9 / 13



Round Robin (RR) Scheduling
Concept: Each process gets a small unit of CPU time, called a time quantum
(or time slice), typically 10 to 100 milliseconds. When a process’s quantum
expires, it is preempted and added to the end of the Ready Queue.

Characteristics:

Preemptive: Yes, based on time quantum.

Fair: Ensures that no process waits indefinitely (no starvation).

Suitable for time-sharing systems where responsiveness is crucial.

Pros & Cons:

Pros: Good response time, fair allocation of CPU, no starvation.

Cons:

▶ Context Switch Overhead: Frequent context switches increase
overhead (CPU is not doing useful work during switches).

▶ Performance depends heavily on Quantum Size:
⋆ Large Quantum: Approaches FCFS, poor response for short jobs.
⋆ Small Quantum: Increases context switch overhead, may reduce

overall throughput. An optimal quantum is typically found between
80% of CPU bursts.

SDB OS 9 / 13



RR Example (Quantum = 2)
Processes (Arrival Time, Burst Time):

P1: (0, 5)

P2: (1, 3)

P3: (2, 1)

Gantt Chart (Quantum = 2):

0 2 4 5 7 8 9

P1 P2 P3 P1 P2 P1

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

Response
Time (RT)

P1 0 5 9 9 - 0 = 9 9 - 5 = 4 0 - 0 = 0
P2 1 3 8 8 - 1 = 7 7 - 3 = 4 2 - 1 = 1
P3 2 1 5 5 - 2 = 3 3 - 1 = 2 4 - 2 = 2

Average Turnaround Time: (9 + 7 + 3)/3 = 6.33 units Average Waiting
Time: (4 + 4 + 2)/3 = 3.33 units Average Response Time:
(0 + 1 + 2)/3 = 1.0 units

SDB OS 10 / 13



RR Example (Quantum = 2)
Processes (Arrival Time, Burst Time):

P1: (0, 5)

P2: (1, 3)

P3: (2, 1)

Gantt Chart (Quantum = 2):

0 2 4 5 7 8 9

P1 P2 P3 P1 P2 P1

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

Response
Time (RT)

P1 0 5 9 9 - 0 = 9 9 - 5 = 4 0 - 0 = 0
P2 1 3 8 8 - 1 = 7 7 - 3 = 4 2 - 1 = 1
P3 2 1 5 5 - 2 = 3 3 - 1 = 2 4 - 2 = 2

Average Turnaround Time: (9 + 7 + 3)/3 = 6.33 units Average Waiting
Time: (4 + 4 + 2)/3 = 3.33 units Average Response Time:
(0 + 1 + 2)/3 = 1.0 units

SDB OS 10 / 13



RR Example (Quantum = 2)
Processes (Arrival Time, Burst Time):

P1: (0, 5)

P2: (1, 3)

P3: (2, 1)

Gantt Chart (Quantum = 2):

0 2 4 5 7 8 9

P1 P2 P3 P1 P2 P1

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

Response
Time (RT)

P1 0 5 9 9 - 0 = 9 9 - 5 = 4 0 - 0 = 0
P2 1 3 8 8 - 1 = 7 7 - 3 = 4 2 - 1 = 1
P3 2 1 5 5 - 2 = 3 3 - 1 = 2 4 - 2 = 2

Average Turnaround Time: (9 + 7 + 3)/3 = 6.33 units Average Waiting
Time: (4 + 4 + 2)/3 = 3.33 units Average Response Time:
(0 + 1 + 2)/3 = 1.0 units

SDB OS 10 / 13



RR Example (Quantum = 2)
Processes (Arrival Time, Burst Time):

P1: (0, 5)

P2: (1, 3)

P3: (2, 1)

Gantt Chart (Quantum = 2):

0 2 4 5 7 8 9

P1 P2 P3 P1 P2 P1

Performance Metrics Calculation:

Process Arrival
Time

Burst
Time

Completion
Time

Turnaround
Time (TAT)

Waiting
Time (WT)

Response
Time (RT)

P1 0 5 9 9 - 0 = 9 9 - 5 = 4 0 - 0 = 0
P2 1 3 8 8 - 1 = 7 7 - 3 = 4 2 - 1 = 1
P3 2 1 5 5 - 2 = 3 3 - 1 = 2 4 - 2 = 2

Average Turnaround Time: (9 + 7 + 3)/3 = 6.33 units Average Waiting
Time: (4 + 4 + 2)/3 = 3.33 units Average Response Time:
(0 + 1 + 2)/3 = 1.0 units

SDB OS 10 / 13



Comparison & Evaluation of Basic Scheduling Algorithms

Algorithm Type Starvation? Optimal
for

Real-World Use
Case

Quantum
Depen-
dent?

FCFS Non-
preemptive

No Simplicity Batch systems, sim-
ple job queues

No

SJF Non-
preemptive

Yes (long
jobs)

Average
Waiting
Time

Batch systems (if
burst known), spe-
cialized tasks

No

SRTF Preemptive Yes (long
jobs)

Average
Waiting
Time

Idealized scenario,
some real-time sys-
tems (with priority)

No

RR Preemptive No Response
Time /
Fairness

Interactive systems,
time-sharing OS
(desktops, servers)

Yes (cru-
cial)

Key Takeaways from Comparison:

No single algorithm is universally ”best”; choice depends on system goals.

Preemptive algorithms generally provide better responsiveness but incur
context switch overhead.

Practical algorithms often combine elements of these basic strategies.

SDB OS 11 / 13



Comparison & Evaluation of Basic Scheduling Algorithms

Algorithm Type Starvation? Optimal
for

Real-World Use
Case

Quantum
Depen-
dent?

FCFS Non-
preemptive

No Simplicity Batch systems, sim-
ple job queues

No

SJF Non-
preemptive

Yes (long
jobs)

Average
Waiting
Time

Batch systems (if
burst known), spe-
cialized tasks

No

SRTF Preemptive Yes (long
jobs)

Average
Waiting
Time

Idealized scenario,
some real-time sys-
tems (with priority)

No

RR Preemptive No Response
Time /
Fairness

Interactive systems,
time-sharing OS
(desktops, servers)

Yes (cru-
cial)

Key Takeaways from Comparison:

No single algorithm is universally ”best”; choice depends on system goals.

Preemptive algorithms generally provide better responsiveness but incur
context switch overhead.

Practical algorithms often combine elements of these basic strategies.

SDB OS 11 / 13



Key Takeaways

CPU scheduling is essential for managing concurrent processes and balancing
various system performance criteria (e.g., CPU utilization, throughput,
turnaround, waiting, response time, fairness).

FCFS is simple but can suffer from the convoy effect and high average waiting
times.

SJF (including SRTF) is theoretically optimal for average waiting time but
impractical due to the need for future burst time prediction and prone to
starvation.

Round Robin provides fairness and good response time for interactive systems but
introduces context switch overhead, highly dependent on the time quantum.

No single scheduling algorithm is perfect; understanding their trade-offs is crucial
for OS design.

Reflection Prompt

Imagine you are designing a scheduling algorithm for a new smartphone OS.
Which of the criteria discussed would be most important, and which algorithm
(or a combination thereof) would you lean towards? Why?

SDB OS Summary 12 / 13



Key Takeaways

CPU scheduling is essential for managing concurrent processes and balancing
various system performance criteria (e.g., CPU utilization, throughput,
turnaround, waiting, response time, fairness).

FCFS is simple but can suffer from the convoy effect and high average waiting
times.

SJF (including SRTF) is theoretically optimal for average waiting time but
impractical due to the need for future burst time prediction and prone to
starvation.

Round Robin provides fairness and good response time for interactive systems but
introduces context switch overhead, highly dependent on the time quantum.

No single scheduling algorithm is perfect; understanding their trade-offs is crucial
for OS design.

Reflection Prompt

Imagine you are designing a scheduling algorithm for a new smartphone OS.
Which of the criteria discussed would be most important, and which algorithm
(or a combination thereof) would you lean towards? Why?

SDB OS Summary 12 / 13



Next Week Preview: Advanced Scheduling & Beyond
Building on the Basics:

Priority Scheduling: Understanding how different priorities affect
execution, including preemption and non-preemption based on priority.

Multilevel Queue Scheduling: Designing complex schedulers with different
queues for different process types.

Multilevel Feedback Queue Scheduling: Addressing starvation and
dynamically adjusting priorities.

Aging: A technique to prevent starvation.

Real-World Schedulers (e.g., Linux CFS, Windows Scheduler).

Prep Tip for Next Session

Review the concepts of preemptive vs. non-preemptive scheduling. Think
about why simple priority scheduling might lead to starvation and how that
problem could be solved.

SDB OS Summary 13 / 13



Next Week Preview: Advanced Scheduling & Beyond
Building on the Basics:

Priority Scheduling: Understanding how different priorities affect
execution, including preemption and non-preemption based on priority.

Multilevel Queue Scheduling: Designing complex schedulers with different
queues for different process types.

Multilevel Feedback Queue Scheduling: Addressing starvation and
dynamically adjusting priorities.

Aging: A technique to prevent starvation.

Real-World Schedulers (e.g., Linux CFS, Windows Scheduler).

Prep Tip for Next Session

Review the concepts of preemptive vs. non-preemptive scheduling. Think
about why simple priority scheduling might lead to starvation and how that
problem could be solved.

SDB OS Summary 13 / 13



Outline

1 Appendix



Quick Quiz: Understanding Scheduling Concepts I

Test Your Conceptual Knowledge:

1 True/False: SJF always produces the shortest average response time.
Explain why.

2 Define: What is the ”Convoy Effect” in FCFS scheduling?

3 Scenario: A CPU-bound process runs for 10 seconds, then an I/O-bound
process needs 1 second of CPU and 9 seconds of I/O.

▶ Which algorithm would give the best response time to the I/O-bound
process?

▶ Which algorithm would result in the highest waiting time for the
I/O-bound process if it arrived just after the CPU-bound one started?

4 Trade-off: In Round Robin, what happens if the time quantum is set to an
extremely large value (e.g., 1000 seconds)? What about an extremely small
value (e.g., 1 microsecond)?

SDB OS Appendix 1 / 10



Quick Quiz: Understanding Scheduling Concepts II

Think & Discuss

Formulate your answers before reviewing the solutions or discussing with
peers.

SDB OS Appendix 2 / 10



Exercise: CPU Scheduling Calculations (Gantt & Metrics) I

Instructions: For each scenario, draw the Gantt chart and calculate the
Turnaround Time, Waiting Time, and average for all processes. Assume context
switch time is negligible.

Processes:

P1: Arrival=0, Burst=8

P2: Arrival=1, Burst=4

P3: Arrival=2, Burst=9

P4: Arrival=3, Burst=5

1 FCFS Scheduling: Draw the Gantt chart and calculate average TAT and
WT.

2 Non-Preemptive SJF Scheduling: Draw the Gantt chart and calculate
average TAT and WT.

SDB OS Appendix 3 / 10



Exercise: CPU Scheduling Calculations (Gantt & Metrics)
II

3 Preemptive SJF (SRTF) Scheduling: Draw the Gantt chart and calculate
average TAT and WT. (Hint: Track remaining burst times carefully!)

4 Round Robin Scheduling (Quantum = 4): Draw the Gantt chart and
calculate average TAT, WT, and Response Time.

Calculation Tip

For each process, remember:
Completion Time = Start Time + Burst Time (or last burst segment)
Turnaround Time = Completion Time - Arrival Time
Waiting Time = Turnaround Time - Burst Time
Response Time = First CPU Start Time - Arrival Time

SDB OS Appendix 4 / 10



Advanced Topics & Important Details I

Deepening Your Knowledge of CPU Scheduling

Multiprocessor Scheduling:

▶ Load Sharing: Distributing processes among multiple CPUs.
▶ Processor Affinity: Trying to keep a process on the same CPU to

leverage cache locality.
▶ Symmetric Multiprocessing (SMP) vs. Asymmetric

Multiprocessing (AMP) Schedulers.

Real-Time Scheduling:

▶ Hard Real-Time: Guarantees completion by a deadline (e.g., flight
control).

▶ Soft Real-Time: Prioritizes real-time tasks but doesn’t guarantee
deadlines (e.g., multimedia).

▶ Common algorithms: Rate Monotonic (RM), Earliest Deadline First
(EDF).

Fair-Share Scheduling:

SDB OS Appendix 5 / 10



Advanced Topics & Important Details II

▶ Ensuring that users or groups of processes get a fair share of CPU
time, rather than just individual processes.

Lottery Scheduling:

▶ A probabilistic approach where processes are given ”tickets,” and a
random ticket is drawn to pick the next process. Can ensure fairness
with good response time.

Dynamic Priority Adjustments (Aging):

▶ How OSes prevent starvation in priority-based systems by gradually
increasing the priority of long-waiting processes.

Estimating Next CPU Burst (Exponential Averaging):

▶ The practical technique used by OSes to predict the next CPU burst
for SJF-like behavior, based on a weighted average of past bursts.

Scheduler Data Structures:

SDB OS Appendix 6 / 10



Advanced Topics & Important Details III

▶ How ready queues are implemented (e.g., priority queues, linked lists of
process control blocks) for efficient selection.

Real-World Scheduler Examples:

▶ Linux CFS (Completely Fair Scheduler): A very popular and
sophisticated scheduler that aims for fairness in CPU allocation.

▶ Windows NT/Vista/7/10 Schedulers: Priority-based, preemptive
schedulers with 32 priority levels.

▶ MacOS Grand Central Dispatch: A task-based concurrency
framework that manages threads and queues.

SDB OS Appendix 7 / 10



Categorizing CPU Scheduling Techniques I

Understanding the Diverse Strategies Employed by Operating Systems

I. By Preemption Type

Non-Preemptive Scheduling:

▶ Once granted, CPU is held until burst completion or voluntary
yield.

▶ Examples: FCFS, Non-Preemptive SJF, Non-Preemptive
Priority.

Preemptive Scheduling:

▶ CPU can be forcibly taken away (preempted) by an interrupt or
higher-priority arrival.

▶ Examples: Round Robin (RR), Shortest-Remaining-Time-First
(SRTF), Preemptive Priority.

SDB OS Appendix 8 / 10



Categorizing CPU Scheduling Techniques II

II. By Optimization Goal / Strategy

Batch-Oriented Scheduling:

▶ Focus: Maximizing throughput, minimizing average turnaround
time.

▶ Examples: FCFS, SJF.

Interactive / Time-Sharing Scheduling:

▶ Focus: Good response time, fairness among users.
▶ Examples: Round Robin, Priority Scheduling (e.g., often used

in Desktop OS like Windows, macOS).

Real-Time Scheduling:

▶ Focus: Meeting strict deadlines for critical tasks.
▶ Examples: Rate Monotonic (RM), Earliest Deadline First

(EDF) (for Embedded Systems, Industrial Control).

SDB OS Appendix 9 / 10



Categorizing CPU Scheduling Techniques III
III. By System Complexity / Specialized Needs

Multi-Level Queue & Feedback Schedulers:

▶ Processes organized into different queues, potentially moving between
them based on behavior/priority.

▶ Example: Many general-purpose OS schedulers use principles of feedback
queues.

Multiprocessor Schedulers:

▶ Manages scheduling across multiple CPU cores.
▶ Concepts: Load Balancing, Processor Affinity (common in Server OS like

Linux, Windows Server).

Fair-Share Scheduling:

▶ Guarantees a minimum CPU share to users or groups, not just individual
processes.

▶ Example: Implemented in various forms, including parts of Linux CFS
(Completely Fair Scheduler).

Energy-Aware Schedulers:

▶ Prioritizes power efficiency alongside performance.
▶ Common in Mobile OS (e.g., Android, iOS) and Laptops.

SDB OS Appendix 10 / 10


	Summary
	Appendix
	Appendix


