
Process Concepts and Process Control Block
Week 3

SDB

Autumn 2025

Agenda: Understanding Process Execution

1 What is a Process? (Defining the Core Unit)

2 Process States & Transitions (The Lifecycle of Execution)

3 The Process Control Block (PCB) (The OS’s Ledger)

4 Context Switching & Queues (Enabling Multitasking)

5 Real-world Observations & Conclusion

Think Ahead: The Orchestrator’s Challenge

How does an Operating System efficiently manage and keep track of hun-
dreds, or even thousands, of concurrently running processes? What data
structures and mechanisms are essential?

SDB OS 1 / 14

Agenda: Understanding Process Execution

1 What is a Process? (Defining the Core Unit)

2 Process States & Transitions (The Lifecycle of Execution)

3 The Process Control Block (PCB) (The OS’s Ledger)

4 Context Switching & Queues (Enabling Multitasking)

5 Real-world Observations & Conclusion

Think Ahead: The Orchestrator’s Challenge

How does an Operating System efficiently manage and keep track of hun-
dreds, or even thousands, of concurrently running processes? What data
structures and mechanisms are essential?

SDB OS 1 / 14

What is a Process? From Program to Execution

Definition: The Active Entity

A process is an instance of a program in execution. It’s not just the code, but
also its current state, associated data, and allocated system resources.

Program Code (Text Section): The
executable instructions.

Data Section: Global and static variables
initialized/uninitialized.

Heap: Dynamically allocated memory
during runtime.

Stack: Temporary data (function
parameters, return addresses, local
variables).

CPU Registers: Current state of the CPU
for this process (e.g., Program Counter,
stack pointer).

Process Metadata: Information managed
by the OS (Process ID (PID), state,
priority).

Resource Handles: Open files, network
connections, I/O devices.

Analogy: The Dynamic Kitchen

Imagine a process as a chef actively cooking a recipe. The recipe itself is the program
code. The kitchen’s ingredients (static data), the current dish being prepared (heap),
and the chef’s current task list (stack) are all part of the process’s memory. The chef’s
focus and tools (registers) represent the CPU state.

SDB OS 2 / 14

What is a Process? From Program to Execution

Definition: The Active Entity

A process is an instance of a program in execution. It’s not just the code, but
also its current state, associated data, and allocated system resources.

Program Code (Text Section): The
executable instructions.

Data Section: Global and static variables
initialized/uninitialized.

Heap: Dynamically allocated memory
during runtime.

Stack: Temporary data (function
parameters, return addresses, local
variables).

CPU Registers: Current state of the CPU
for this process (e.g., Program Counter,
stack pointer).

Process Metadata: Information managed
by the OS (Process ID (PID), state,
priority).

Resource Handles: Open files, network
connections, I/O devices.

Analogy: The Dynamic Kitchen

Imagine a process as a chef actively cooking a recipe. The recipe itself is the program
code. The kitchen’s ingredients (static data), the current dish being prepared (heap),
and the chef’s current task list (stack) are all part of the process’s memory. The chef’s
focus and tools (registers) represent the CPU state.

SDB OS 2 / 14

Inside a Process: Memory Layout

Typical Memory Segments of a Process:

Text Segment: Contains compiled code
(read-only)

Data Segment: Global/static variables
▶ Initialized Data: Variables with assigned

values
▶ Uninitialized Data (BSS): Variables declared

but not initialized

Heap: Dynamically allocated memory (e.g., malloc)

Stack: Function call frames, local variables

Stack
(grows down)

(grows up)
Heap

Data Segment

Text Segment

Low Memory
(e.g., 0x00000000)

High Memory
(e.g., 0xFFFFFFFF)

Note: “Low memory” refers to the lower end of a process’s virtual address space, starting near
address 0. It typically contains the code and data segments. “High memory” is where the stack
begins and grows downward.

SDB OS 3 / 14

Process States: The Lifecycle of Execution
The Dynamic Lifecycle of a Process:

New: The process is being created. Resources are being allocated.

Ready: The process is loaded into main memory and awaiting CPU
allocation. It is runnable.

Running: Instructions are being executed by the CPU. This is the active
state.

Waiting (Blocked): The process is waiting for some event to occur (e.g.,
I/O completion, a signal, resource availability). It cannot execute
immediately.

Terminated: The process has finished execution and is awaiting final
cleanup by the OS.

Discussion Point: State Transitions

Question: Can a process transition directly from the Running state back
to the Ready state? If so, under what circumstances, and why is this critical
for multitasking?

SDB OS 4 / 14

Process States: The Lifecycle of Execution
The Dynamic Lifecycle of a Process:

New: The process is being created. Resources are being allocated.

Ready: The process is loaded into main memory and awaiting CPU
allocation. It is runnable.

Running: Instructions are being executed by the CPU. This is the active
state.

Waiting (Blocked): The process is waiting for some event to occur (e.g.,
I/O completion, a signal, resource availability). It cannot execute
immediately.

Terminated: The process has finished execution and is awaiting final
cleanup by the OS.

Discussion Point: State Transitions

Question: Can a process transition directly from the Running state back
to the Ready state? If so, under what circumstances, and why is this critical
for multitasking?

SDB OS 4 / 14

Process State Transitions: A Visual Flow

New Ready

Running Waiting

Terminated

Admitted
(OS grants
resources)

Dispatch
(Scheduler
selects)

Time Slice
Expired/

Preemption

I/O Request/
Event Wait

I/O Completion/
Event Occurs

Exit/
Termination

Parent
terminates
(e.g., kill)

Each transition is a critical OS operation, triggered by specific events or
scheduling decisions.

SDB OS 5 / 14

Special Process Types: Beyond the Basics I

Understanding how different process types behave is crucial for system
management and debugging.

Zombie Process (Z or ‘⟨defunct⟩‘)
▶ A process that has terminated but whose Process Control Block

(PCB) still exists.
▶ Occurs because its parent has not yet called ‘wait()‘ to collect its

exit status.
▶ Consumes minimal resources (mostly PID entry); too many can

exhaust PID space.

Orphan Process

▶ A running process whose parent process has terminated.
▶ Adopted by the ‘init‘ process (PID 1) or ‘systemd‘, which becomes

its new parent and will eventually ‘wait()‘ for it.
▶ Generally not a problem as ‘init‘ ensures proper cleanup.

SDB OS 6 / 14

Special Process Types: Beyond the Basics II

Daemon Process

▶ A long-running background process that operates independently of a
controlling terminal.

▶ Typically performs system-wide services (e.g., web server, logging).
▶ Often initiated at boot and adopted by ‘init‘ or ‘systemd‘.

Foreground vs. Background Processes

▶ Foreground: Interacts directly with the terminal, blocking the shell
until it completes or is suspended.

▶ Background: Runs independently of the terminal (using ‘&‘), allowing
the shell to accept new commands immediately.

For detailed explanations on each process type, refer to the Appendix.

SDB OS 7 / 14

The Process Control Block (PCB)

Definition: The Central Data Structure

The Process Control Block (PCB) is a highly critical data structure maintained
by the Operating System for every process. It contains all the information
needed to manage and control a specific process.

Key Information Stored in a PCB:

Process Identification: Process ID (PID),
Parent PID, User ID, Group ID.

Process State: Current state (New,
Ready, Running, Waiting, Terminated).

CPU State Information: CPU registers,
Program Counter (PC), Stack Pointer,
General Purpose Registers.

Memory Management Information:
Pointers to page tables or segment tables,
base and limit registers for memory areas.

Scheduling Information: Process priority,
pointers to scheduling queues, CPU time
used, time limits.

I/O Status Information: List of open
files, list of allocated I/O devices,
outstanding I/O requests.

Accounting Information: CPU time used,
real time used, time limits, process
number.

The PCB acts as the Operating System’s comprehensive ”fingerprint” or ”identity card” for
each active process, enabling context switching and resource management.

SDB OS 8 / 14

PCB Layout Visualization
Conceptual Structure

The Process Control Block (PCB)

Process ID (PID) & State

CPU Registers (PC, SP, AX, etc.)

Memory Management Info (Page Table Pointer)

Scheduling Info (Priority, Queue Pointers)

I/O Status (Open Files, Devices)

Accounting Info (CPU Usage, Timers)

One PCB
per Process

OS identifies and tracks process
lifecycle.

Critical for Context Switching.

Manages Virtual Memory and
protection.

Used by CPU Scheduler to
pick next process.

Tracks resource usage and I/O
operations.

For resource limits and perfor-
mance monitoring.

This aggregated data allows the OS to effectively manage, switch, and
resume any process at any time.

SDB OS 9 / 14

Context Switching: The Heart of Multitasking

The Mechanism:
▶ Phase 1: Save Current State. The Operating System saves the complete
CPU state (registers, program counter, stack pointer, etc.) of the currently
running process into its corresponding PCB.
▶ Phase 2: Load Next State. The OS then loads the saved CPU state from
the PCB of the process selected to run next.
▶ Phase 3: Dispatch. The CPU then begins execution from the loaded
Program Counter of the new process.

Why it Matters (Costs & Benefits):
▶ Enables Multitasking: Allows multiple processes
to appear to run concurrently on a single CPU,
providing responsiveness and resource sharing.
▶ Overhead: This operation is pure overhead. The
CPU performs no useful work for the user processes
during a context switch. It consumes CPU cycles
and memory bandwidth.

OS Optimizations:
▶ Minimize context switch
frequency (e.g., larger time
slices).
▶ Optimize PCB access and
state saving/loading
routines.
▶ Hardware support (e.g.,
dedicated registers for fast
context saving).

SDB OS 10 / 14

Context Switching: The Heart of Multitasking

The Mechanism:
▶ Phase 1: Save Current State. The Operating System saves the complete
CPU state (registers, program counter, stack pointer, etc.) of the currently
running process into its corresponding PCB.
▶ Phase 2: Load Next State. The OS then loads the saved CPU state from
the PCB of the process selected to run next.
▶ Phase 3: Dispatch. The CPU then begins execution from the loaded
Program Counter of the new process.

Why it Matters (Costs & Benefits):
▶ Enables Multitasking: Allows multiple processes
to appear to run concurrently on a single CPU,
providing responsiveness and resource sharing.
▶ Overhead: This operation is pure overhead. The
CPU performs no useful work for the user processes
during a context switch. It consumes CPU cycles
and memory bandwidth.

OS Optimizations:
▶ Minimize context switch
frequency (e.g., larger time
slices).
▶ Optimize PCB access and
state saving/loading
routines.
▶ Hardware support (e.g.,
dedicated registers for fast
context saving).

SDB OS 10 / 14

Context Switching: The Heart of Multitasking

The Mechanism:
▶ Phase 1: Save Current State. The Operating System saves the complete
CPU state (registers, program counter, stack pointer, etc.) of the currently
running process into its corresponding PCB.
▶ Phase 2: Load Next State. The OS then loads the saved CPU state from
the PCB of the process selected to run next.
▶ Phase 3: Dispatch. The CPU then begins execution from the loaded
Program Counter of the new process.

Why it Matters (Costs & Benefits):
▶ Enables Multitasking: Allows multiple processes
to appear to run concurrently on a single CPU,
providing responsiveness and resource sharing.
▶ Overhead: This operation is pure overhead. The
CPU performs no useful work for the user processes
during a context switch. It consumes CPU cycles
and memory bandwidth.

OS Optimizations:
▶ Minimize context switch
frequency (e.g., larger time
slices).
▶ Optimize PCB access and
state saving/loading
routines.
▶ Hardware support (e.g.,
dedicated registers for fast
context saving).

SDB OS 10 / 14

Process Queues: Organizing the Workflow
Types of Queues in OS Memory:
■ Job Queue (Long-Term Scheduler): Contains all processes in the system,
typically residing on disk. Processes from here are admitted to the ready queue.
■ Ready Queue (Short-Term Scheduler): Contains processes that are in main
memory and are ready and waiting for the CPU. Processes from here are
dispatched to the CPU.
■ Device Queues (I/O Queues): Contains processes waiting for a specific I/O
device (e.g., disk, printer, network card). There is typically one queue per device.

Key Queue Transitions:

New Process → Job Queue → (Admitted) → Ready Queue

Running Process (Time Slice Expired) → Ready Queue

Running Process (I/O Request) → Device Queue

Device Queue (I/O Complete) → Ready Queue

Any Queue → Terminated State (e.g., process completion, killed)

These queues are fundamental for the OS’s scheduling policies, ensuring fair and
efficient resource allocation.

SDB OS 11 / 14

Process Queues: Organizing the Workflow
Types of Queues in OS Memory:
■ Job Queue (Long-Term Scheduler): Contains all processes in the system,
typically residing on disk. Processes from here are admitted to the ready queue.
■ Ready Queue (Short-Term Scheduler): Contains processes that are in main
memory and are ready and waiting for the CPU. Processes from here are
dispatched to the CPU.
■ Device Queues (I/O Queues): Contains processes waiting for a specific I/O
device (e.g., disk, printer, network card). There is typically one queue per device.
Key Queue Transitions:

New Process → Job Queue → (Admitted) → Ready Queue

Running Process (Time Slice Expired) → Ready Queue

Running Process (I/O Request) → Device Queue

Device Queue (I/O Complete) → Ready Queue

Any Queue → Terminated State (e.g., process completion, killed)

These queues are fundamental for the OS’s scheduling policies, ensuring fair and
efficient resource allocation.

SDB OS 11 / 14

Practical Session: Observing Processes in Linux
Hands-on: Exploring Process Information

Connect to a Linux environment (VM,
WSL, or native).

Open a terminal and execute the
following commands:

View a snapshot of your

running processes

ps aux | head -n 10

Observe real -time process

activity , CPU , and memory

top

Examine the status of your

current shell process

cat /proc/$$/status

What to Focus On During Your
Observation:

Process State (STAT/S column):
Identify processes in ’R’ (Running), ’S’
(Sleeping/Waiting), ’Z’ (Zombie), ’T’
(Stopped) states.

Process ID (PID) & Parent PID
(PPID): Understand process hierarchy.

CPU Usage (%CPU) and Memory
Usage (%MEM): Analyze resource
consumption.

CPU Time (TIME+): Total CPU time
consumed.

Challenge Question

Can you find the PID of your web browser and then locate its process status file in
‘/proc‘? What information does it contain?

SDB OS 12 / 14

Practical Session: Observing Processes in Linux
Hands-on: Exploring Process Information

Connect to a Linux environment (VM,
WSL, or native).

Open a terminal and execute the
following commands:

View a snapshot of your

running processes

ps aux | head -n 10

Observe real -time process

activity , CPU , and memory

top

Examine the status of your

current shell process

cat /proc/$$/status

What to Focus On During Your
Observation:

Process State (STAT/S column):
Identify processes in ’R’ (Running), ’S’
(Sleeping/Waiting), ’Z’ (Zombie), ’T’
(Stopped) states.

Process ID (PID) & Parent PID
(PPID): Understand process hierarchy.

CPU Usage (%CPU) and Memory
Usage (%MEM): Analyze resource
consumption.

CPU Time (TIME+): Total CPU time
consumed.

Challenge Question

Can you find the PID of your web browser and then locate its process status file in
‘/proc‘? What information does it contain?

SDB OS 12 / 14

Key Takeaways

A process is the fundamental unit of execution in an OS, representing a
program with its state and resources.

The Process Control Block (PCB) is the OS’s vital data structure,
holding all metadata required for process management.

Processes cycle through distinct states (New, Ready, Running, Waiting,
Terminated), driven by events and the OS scheduler.

Context switching is the mechanism that enables multitasking, allowing
the CPU to rapidly switch between processes, despite its inherent overhead.

The OS uses various queues (Job, Ready, Device) to organize and manage
processes for efficient scheduling and resource allocation.

Future Reflection Prompt

Given your understanding of processes and PCBs, how might this knowledge be directly
applicable when you are debugging a multi-threaded application or optimizing a system’s
performance? Consider issues like race conditions or resource contention.

SDB OS Summary 13 / 14

Key Takeaways

A process is the fundamental unit of execution in an OS, representing a
program with its state and resources.

The Process Control Block (PCB) is the OS’s vital data structure,
holding all metadata required for process management.

Processes cycle through distinct states (New, Ready, Running, Waiting,
Terminated), driven by events and the OS scheduler.

Context switching is the mechanism that enables multitasking, allowing
the CPU to rapidly switch between processes, despite its inherent overhead.

The OS uses various queues (Job, Ready, Device) to organize and manage
processes for efficient scheduling and resource allocation.

Future Reflection Prompt

Given your understanding of processes and PCBs, how might this knowledge be directly
applicable when you are debugging a multi-threaded application or optimizing a system’s
performance? Consider issues like race conditions or resource contention.

SDB OS Summary 13 / 14

Next Week Preview: Deeper Dive into CPU Scheduling
The Dispatcher’s Role: How the OS hands off the CPU to the selected
process.
Scheduling Metrics: Understanding performance indicators like Turnaround
Time, Waiting Time, and Response Time.
Scheduling Goals: Balancing fairness, efficiency, throughput, and
responsiveness in CPU allocation.
Common Scheduling Algorithms:

▶ First-Come, First-Served (FCFS)
▶ Shortest Job First (SJF) and Shortest Remaining Time First (SRTF)
▶ Round Robin
▶ Priority-based Scheduling
▶ Multilevel Queue and Multilevel Feedback Queue Scheduling

Practical Application: Hands-on simulation or analysis of scheduler
behavior.

Preparation Tip for Next Session

Experiment with simple programs in Linux: use the time ./a.out command to measure
execution time. Think about how other running processes might affect these measure-
ments.

SDB OS Summary 14 / 14

Next Week Preview: Deeper Dive into CPU Scheduling
The Dispatcher’s Role: How the OS hands off the CPU to the selected
process.
Scheduling Metrics: Understanding performance indicators like Turnaround
Time, Waiting Time, and Response Time.
Scheduling Goals: Balancing fairness, efficiency, throughput, and
responsiveness in CPU allocation.
Common Scheduling Algorithms:

▶ First-Come, First-Served (FCFS)
▶ Shortest Job First (SJF) and Shortest Remaining Time First (SRTF)
▶ Round Robin
▶ Priority-based Scheduling
▶ Multilevel Queue and Multilevel Feedback Queue Scheduling

Practical Application: Hands-on simulation or analysis of scheduler
behavior.

Preparation Tip for Next Session

Experiment with simple programs in Linux: use the time ./a.out command to measure
execution time. Think about how other running processes might affect these measure-
ments.

SDB OS Summary 14 / 14

Outline

1 Appendix

Quick Quiz: Test Your Understanding

Self-Assessment Questions:

1 During a context switch, what specific information is saved from the current
process, and where is it stored?

2 Describe the sequence of events that allows a process to move from a
Waiting state back to the Ready state.

3 Explain why a process cannot simultaneously be in the Running and
Waiting states. What fundamental principle does this illustrate?

Hint for Discussion

Refer back to the Process Control Block (PCB) and Process State
Transition Diagram slides. Consider the role of events like I/O completion
and the CPU’s single execution unit.

SDB OS Appendix 1 / 26

Quick Quiz: Test Your Understanding

Self-Assessment Questions:

1 During a context switch, what specific information is saved from the current
process, and where is it stored?

2 Describe the sequence of events that allows a process to move from a
Waiting state back to the Ready state.

3 Explain why a process cannot simultaneously be in the Running and
Waiting states. What fundamental principle does this illustrate?

Hint for Discussion

Refer back to the Process Control Block (PCB) and Process State
Transition Diagram slides. Consider the role of events like I/O completion
and the CPU’s single execution unit.

SDB OS Appendix 1 / 26

Quick Check: Process Fundamentals
Test Your Basic Understanding:

1 True/False: A program is the same as a process. Explain your answer briefly.

2 Multiple Choice: Which of the following is NOT typically stored in a Process Control

Block (PCB)?

▶ (a) Process ID (PID)
▶ (b) CPU Registers
▶ (c) Source Code
▶ (d) Memory Management Information

3 Fill in the Blank: When a process makes an I/O request, it typically transitions from the
state to the state.

4 Short Answer: What is the primary purpose of context switching in an operating system?

Think & Discuss

Take a moment to formulate your answers. We’ll discuss these briefly.

SDB OS Appendix 2 / 26

Quick Check: Process Fundamentals
Test Your Basic Understanding:

1 True/False: A program is the same as a process. Explain your answer briefly.

2 Multiple Choice: Which of the following is NOT typically stored in a Process Control

Block (PCB)?

▶ (a) Process ID (PID)
▶ (b) CPU Registers
▶ (c) Source Code
▶ (d) Memory Management Information

3 Fill in the Blank: When a process makes an I/O request, it typically transitions from the
state to the state.

4 Short Answer: What is the primary purpose of context switching in an operating system?

Think & Discuss

Take a moment to formulate your answers. We’ll discuss these briefly.

SDB OS Appendix 2 / 26

Advanced Conceptual Quiz: Deeper Dive
Apply Your Knowledge:

1 Scenario Analysis: A process is currently in the Ready state. Describe two distinct events
or OS decisions that could cause it to transition into the Terminated state without ever
entering the Running state.

2 Critical Thinking: Context switching introduces overhead. If an OS designers wants to
minimize this overhead, what specific PCB fields would they focus on optimizing for faster
saving and loading, and why?

3 Analogy Extension: Revisit our ”chef executing a recipe” analogy. Where in this analogy
would you place the ”Ready Queue” and the ”Device Queue”? Explain your reasoning.

4 Problem Solving: Imagine you are tasked with designing a very simple OS. You have
limited memory for PCBs. Which PCB field(s) would you consider absolutely essential for
basic multitasking, and which could potentially be omitted or simplified for a bare-bones
system? Justify your choices.

Collaborate & Challenge

Discuss these challenges with a peer. There might be more than one valid approach!

SDB OS Appendix 3 / 26

Advanced Conceptual Quiz: Deeper Dive
Apply Your Knowledge:

1 Scenario Analysis: A process is currently in the Ready state. Describe two distinct events
or OS decisions that could cause it to transition into the Terminated state without ever
entering the Running state.

2 Critical Thinking: Context switching introduces overhead. If an OS designers wants to
minimize this overhead, what specific PCB fields would they focus on optimizing for faster
saving and loading, and why?

3 Analogy Extension: Revisit our ”chef executing a recipe” analogy. Where in this analogy
would you place the ”Ready Queue” and the ”Device Queue”? Explain your reasoning.

4 Problem Solving: Imagine you are tasked with designing a very simple OS. You have
limited memory for PCBs. Which PCB field(s) would you consider absolutely essential for
basic multitasking, and which could potentially be omitted or simplified for a bare-bones
system? Justify your choices.

Collaborate & Challenge

Discuss these challenges with a peer. There might be more than one valid approach!

SDB OS Appendix 3 / 26

Exercise: Process State & PCB Mapping
Instructions: For each scenario below, identify the likely process state(s) and list
which specific PCB fields would be most actively updated or referenced by the OS.

1 Scenario A: User clicks ”Save” in a word processor.
▶ Process State:
▶ Key PCB fields updated/referenced:

2 Scenario B: The OS timer interrupt fires, signaling end of time slice.
▶ Process State:
▶ Key PCB fields updated/referenced:

3 Scenario C: A new application is launched from the desktop.
▶ Process State:
▶ Key PCB fields updated/referenced:

4 Scenario D: A background compilation task completes successfully.
▶ Process State:
▶ Key PCB fields updated/referenced:

Consider the OS’s Role

Think about what the OS *must* know or change about the process in each event.

SDB OS Appendix 4 / 26

Exercise: Process State & PCB Mapping
Instructions: For each scenario below, identify the likely process state(s) and list
which specific PCB fields would be most actively updated or referenced by the OS.

1 Scenario A: User clicks ”Save” in a word processor.
▶ Process State:
▶ Key PCB fields updated/referenced:

2 Scenario B: The OS timer interrupt fires, signaling end of time slice.
▶ Process State:
▶ Key PCB fields updated/referenced:

3 Scenario C: A new application is launched from the desktop.
▶ Process State:
▶ Key PCB fields updated/referenced:

4 Scenario D: A background compilation task completes successfully.
▶ Process State:
▶ Key PCB fields updated/referenced:

Consider the OS’s Role

Think about what the OS *must* know or change about the process in each event.

SDB OS Appendix 4 / 26

Exercise: Context Switching & Performance Implications
Instructions: Answer the following questions, showing your reasoning.

1 Quantitative Analysis: Assume a context switch takes 10µs (microseconds). If a CPU

has a time slice of 10ms (milliseconds), what percentage of the CPU’s time is spent on

context switching if processes always use their full time slice?

▶ Calculation:
▶ Percentage Overhead:

2 Trade-off Discussion: Based on your calculation above, discuss the trade-offs of having a
very short time slice versus a very long time slice in a multitasking OS. Consider
responsiveness, throughput, and overhead.

3 Challenge: ”Zombie” Processes:

▶ What is a ”zombie” process?
▶ Why does it exist (what problem does it solve for the parent)?
▶ Why is it generally harmless, but why can a large number of them be problematic?

Hint: Time Conversions!

Remember to convert all time units to be consistent (e.g., all to microseconds or all to
milliseconds).

SDB OS Appendix 5 / 26

Exercise: Context Switching & Performance Implications
Instructions: Answer the following questions, showing your reasoning.

1 Quantitative Analysis: Assume a context switch takes 10µs (microseconds). If a CPU

has a time slice of 10ms (milliseconds), what percentage of the CPU’s time is spent on

context switching if processes always use their full time slice?

▶ Calculation:
▶ Percentage Overhead:

2 Trade-off Discussion: Based on your calculation above, discuss the trade-offs of having a
very short time slice versus a very long time slice in a multitasking OS. Consider
responsiveness, throughput, and overhead.

3 Challenge: ”Zombie” Processes:

▶ What is a ”zombie” process?
▶ Why does it exist (what problem does it solve for the parent)?
▶ Why is it generally harmless, but why can a large number of them be problematic?

Hint: Time Conversions!

Remember to convert all time units to be consistent (e.g., all to microseconds or all to
milliseconds).

SDB OS Appendix 5 / 26

Process State Transitions
Detailed

New Ready Running Exit

BlockedSuspended
ready

Suspended
blocked

Admit

Dispatch

Release

Timeout

Event waitEvent occur

Suspend Activate
Event occur

ActivateSuspend

Secondary memory

M
a
in

M
em

o
ry

SDB OS Appendix 6 / 26

Special Process Types: Zombie Processes (Z) I

Definition: The Deceased Process

A Zombie Process (also known as a ”defunct” process) is a process that has
completed its execution (terminated), but its entry in the process table (its PCB)
still exists because its parent process has not yet called ‘wait()‘ or ‘waitpid()‘ to
collect its exit status.

How They Are Created:

A child process finishes execution (calls ‘exit()‘).

The OS cleans up most of its resources (memory, open files, CPU state).

However, the PCB is retained to allow the parent process to retrieve the
child’s exit status.

If the parent never ‘wait()‘s, the PCB remains.

Why Are They a Concern?

SDB OS Appendix 7 / 26

Special Process Types: Zombie Processes (Z) II

They consume minimal system resources (mainly just a process ID and a
PCB entry).

A few zombies are harmless.

Too many zombies: Can exhaust the system’s process ID (PID) space,
preventing new processes from being created. This is a rare but serious
issue, typically indicating a bug in a long-running parent process.

How to ”Reap” a Zombie Process:

The parent process must call ‘wait()‘ or ‘waitpid()‘.

If the parent terminates, all its zombie children are inherited by the ‘init‘
process (PID 1), which automatically ‘wait()‘s for its adopted children,
cleaning them up.

You might see them listed as ‘Z‘ or ‘⟨defunct⟩ >‘ in ‘ps‘ output.

SDB OS Appendix 8 / 26

Special Process Types: Orphan Processes (O) I

Definition: The Parentless Process
An Orphan Process is a running process whose parent process has terminated
before the child process.

How They Are Created:

A parent process creates a child process.

The parent process then terminates (e.g., crashes, completes its task) while
the child process is still running.

How the OS Handles Orphans (The ‘init‘ Process):

Unlike zombies, orphan processes are fully functional and continue to run.

The operating system (specifically the ‘init‘ process, which always has PID
1, or ‘systemd‘ in modern Linux) automatically adopts orphan processes.

The ‘init‘ process becomes the new parent of the orphaned child.

SDB OS Appendix 9 / 26

Special Process Types: Orphan Processes (O) II

This is a crucial mechanism for system stability, ensuring no running process
is left without a parent to manage it.

Why They Are Not a Problem (Generally):

Orphans are actively managed by ‘init‘/‘systemd‘.

‘init‘ will eventually ‘wait()‘ for these adopted children when they finally
terminate, preventing them from becoming zombies.

This mechanism ensures proper resource cleanup.

You might see their PPID change to 1 in ‘ps‘ output once orphaned.

SDB OS Appendix 10 / 26

Special Process Types: Daemon Processes I

Definition: The System’s Background Workers

A Daemon Process (often simply called a ”daemon”) is a computer program
that runs as a background process, rather than being under the direct control of
an interactive user. Daemons are typically initiated at boot time and live for the
entire duration of the system’s uptime.

Characteristics:

Background Execution: They don’t have a controlling terminal and
typically don’t interact directly with users.

System Services: They perform system-wide functions, such as handling
network requests (web servers, SSH daemons), logging, printing, or
scheduling tasks.

Long-Lived: Designed to run continuously, waiting for events or performing
periodic tasks.

SDB OS Appendix 11 / 26

Special Process Types: Daemon Processes II

Parent is ‘init‘ (often): Once daemonized, their original parent often exits,
and they are adopted by the ‘init‘ or ‘systemd‘ process (PID 1).

Examples:

‘httpd‘ (Apache web server daemon)

‘sshd‘ (SSH daemon for remote login)

‘syslogd‘ (system logging daemon)

‘crond‘ (cron daemon for scheduled tasks)

In Linux, daemonization typically involves forking, detaching from the controlling

terminal, and often adopting PID 1.

SDB OS Appendix 12 / 26

Foreground vs. Background Processes I

Definition: Interactive Control
This classification describes how a process interacts with the user and the
controlling terminal (e.g., a shell).

1. Foreground Process:

Direct Interaction: The process that currently has control of the terminal.
It can receive input from the keyboard and send output directly to the
screen.

Blocking: The shell (or terminal) waits for the foreground process to
complete or be suspended before accepting new commands.

Creation: Typically created when you type a command and press Enter in a
shell (e.g., ‘ls -l‘, ‘vim‘).

SDB OS Appendix 13 / 26

Foreground vs. Background Processes II
2. Background Process:

No Direct Control: The process runs independently of the terminal,
meaning the shell does not wait for its completion and immediately returns
control to the user.

Detached from Input: It generally cannot receive keyboard input directly
from the terminal. Its output might still go to the terminal or be redirected.

Creation: Created by appending an ampersand (‘&‘) to a command in the
shell (e.g., ‘firefox &‘, ‘sleep 300 &‘). Can also be moved to background
from foreground using ‘Ctrl+Z‘ (suspend) then ‘bg‘.

Practical Implications:

Essential for multitasking in a command-line environment.

Understanding their behavior is key for managing long-running tasks or
services without tying up your terminal.

‘jobs‘ command lists background processes, ‘fg‘ brings them to foreground,
‘bg‘ resumes them in background.

These concepts are closely related to Job Control in Unix-like operating systems.

SDB OS Appendix 14 / 26

Explore Further: Advanced Process & Kernel Topics
Beyond the Basics – What Else is in a PCB?

Parent/Child Links: Process hierarchy (PPID, child list)
Signal Handlers: Registered actions for signals (e.g., SIGINT)
Resource Descriptors: File descriptors, memory maps
Scheduling Info: Priority, time slice, CPU affinity
Security Context: User ID, group ID, capabilities

Context Switching – What Happens?

Save current process state (registers, PC, stack pointer) into PCB
Choose next process via scheduler
Load next process state from its PCB
Update memory mappings (page tables, TLB flush if needed)

Explore More

Try exploring: - How Linux implements ‘task struct‘ - How context
switches are optimized in multicore systems - How real-time OSes
reduce context switch latency

SDB OS Appendix 15 / 26

Explore Further: Advanced Process & Kernel Topics
Beyond the Basics – What Else is in a PCB?

Parent/Child Links: Process hierarchy (PPID, child list)
Signal Handlers: Registered actions for signals (e.g., SIGINT)
Resource Descriptors: File descriptors, memory maps
Scheduling Info: Priority, time slice, CPU affinity
Security Context: User ID, group ID, capabilities

Context Switching – What Happens?

Save current process state (registers, PC, stack pointer) into PCB
Choose next process via scheduler
Load next process state from its PCB
Update memory mappings (page tables, TLB flush if needed)

Explore More

Try exploring: - How Linux implements ‘task struct‘ - How context
switches are optimized in multicore systems - How real-time OSes
reduce context switch latency

SDB OS Appendix 15 / 26

Explore Further: Advanced Process & Kernel Topics
Beyond the Basics – What Else is in a PCB?

Parent/Child Links: Process hierarchy (PPID, child list)
Signal Handlers: Registered actions for signals (e.g., SIGINT)
Resource Descriptors: File descriptors, memory maps
Scheduling Info: Priority, time slice, CPU affinity
Security Context: User ID, group ID, capabilities

Context Switching – What Happens?

Save current process state (registers, PC, stack pointer) into PCB
Choose next process via scheduler
Load next process state from its PCB
Update memory mappings (page tables, TLB flush if needed)

Explore More

Try exploring: - How Linux implements ‘task struct‘ - How context
switches are optimized in multicore systems - How real-time OSes
reduce context switch latency

SDB OS Appendix 15 / 26

Linux’s ‘/proc‘ Filesystem - The Kernel Interface I
What is ‘/proc‘ (Procfs)?

A virtual filesystem (sometimes called a ”pseudo-filesystem”).

It’s not stored on disk; it’s generated on-the-fly by the Linux kernel when
you access it.

Provides a powerful interface to kernel data structures and real-time
system information.

Allows observation and, in some cases, modification of kernel parameters
and process states.

Accessing Process Information: ‘cat /proc/$$/status‘

‘$$‘: A special shell variable that expands to the Process ID (PID) of the
current shell.

‘/proc/PID/‘: For every running process with PID ‘X‘, there’s a directory
‘/proc/X/‘.

‘/proc/PID/status‘: A human-readable summary of a process’s status,
resembling parts of its Process Control Block (PCB).

SDB OS Appendix 16 / 26

Linux’s ‘/proc‘ Filesystem - The Kernel Interface II

Example Output (‘cat /proc/$$/status‘ for a ‘bash‘ shell):

Name: bash # Process name

State: S (sleeping) # Current process state

Pid: 1234 # Process ID

PPid: 1233 # Parent Process ID

VmSize: 15000 kB # Current virtual memory size

VmRSS: 7000 kB # Current resident set size (physical memory)

Threads: 1 # Number of threads in the process

Cpus_allowed_list: 0-3 # CPUs the process is allowed to run on

voluntary_ctxt_switches: 1000 # Number of voluntary context switches

nonvoluntary_ctxt_switches: 50 # Number of non -voluntary context switches

(Output truncated for brevity)

SDB OS Appendix 17 / 26

Deconstructing ‘/proc/PID/status‘ (Key Fields) I

The fields in ‘/proc/PID/status‘ provide direct insight into OS concepts:

1. Process Identification & State:

‘Name‘: The executable name (often truncated).

‘State‘: Current process state (e.g., ‘R‘ for Running, ‘S‘ for Sleeping, ‘Z‘ for
Zombie, ‘T‘ for Stopped). Direct mapping to process states from Week 3.

‘Pid‘: The process’s unique ID.

‘PPid‘: The Parent Process ID. Crucial for understanding process
hierarchies and orphan processes.

‘Tgid‘: Thread Group ID. For a multi-threaded process, all threads share
the same ‘Tgid‘, which is the PID of the main thread.

‘Threads‘: Number of threads within this process. Directly relates to
multithreading concepts from Week 8.

SDB OS Appendix 18 / 26

Deconstructing ‘/proc/PID/status‘ (Key Fields) II

2. Resource Usage (Memory):

‘VmPeak‘: Peak virtual memory size.

‘VmSize‘: Current virtual memory size.

‘VmHWM‘: Peak resident set size (highest physical memory usage).

‘VmRSS‘: Current resident set size (actual physical memory used by the
process, excluding swapped-out portions).

‘VmData‘, ‘VmStk‘, ‘VmExe‘, ‘VmLib‘: Sizes of data, stack, executable
code, and shared library segments.

These fields offer a glimpse into the process’s memory layout and usage, a
core part of its PCB’s memory management information (linking to future
Memory Management topics).

SDB OS Appendix 19 / 26

Deconstructing ‘/proc/PID/status‘ (Key Fields) III

3. Scheduling & Control:

‘Cpus allowed‘ / ‘Cpus allowed list‘: A bitmask/list indicating which
CPU cores the process is allowed to run on. Directly related to CPU affinity
control (Week 11).

‘Mems allowed‘ / ‘Mems allowed list‘: Similar to ‘Cpus allowed‘, but for
NUMA (Non-Uniform Memory Access) nodes, indicating allowed memory
nodes.

‘voluntary ctxt switches‘: Number of times the process explicitly yielded
the CPU (e.g., waiting for I/O, ‘sleep()‘).

‘nonvoluntary ctxt switches‘: Number of times the scheduler preempted
the process (e.g., time slice expired, higher priority task became ready).
These provide insights into scheduler behavior and efficiency (Week 4, 5, 6).

SDB OS Appendix 20 / 26

Deconstructing ‘/proc/PID/status‘ (Key Fields) IV

4. Privileges & Signals:

‘Uid‘ / ‘Gid‘: User ID and Group ID (real, effective, saved, filesystem).
Essential for understanding process permissions and security (Week 1/2
concepts).

‘Sig*‘: Various fields related to signal handling (pending signals, blocked
signals, ignored signals, caught signals). The PCB stores this signal
management information.

‘Cap*‘: Capabilities (e.g., ‘CapEff‘ for effective capabilities). Linux
capabilities allow breaking down root’s super-privileges into smaller, distinct
units.

‘/proc/PID/status‘ is like a simplified, real-time snapshot of the process’s PCB

and its interaction with the kernel’s resource managers.

SDB OS Appendix 21 / 26

Navigating the ‘/proc‘ Filesystem (Other Key Areas) I

Beyond ‘status‘, the ‘/proc‘ filesystem offers a wealth of information about
processes and the system.

Per-Process Information (‘/proc/PID/‘):

‘cmdline‘: The full command-line arguments used to start the process.

‘environ‘: The environment variables of the process.

‘cwd‘: A symbolic link to the process’s current working directory.

‘exe‘: A symbolic link to the executable file of the process.

‘fd/‘: A directory containing symbolic links for all open file descriptors of
the process. (E.g., ‘ls -l /proc/$$/fd/‘ to see your shell’s open files).

‘maps‘: A list of memory regions (mappings) in the process’s virtual address
space, including shared libraries, heap, and stack. (Important for Memory
Management - future topic).

‘task/‘: A subdirectory containing information about each thread within a
multi-threaded process.

SDB OS Appendix 22 / 26

Navigating the ‘/proc‘ Filesystem (Other Key Areas) II

System-Wide Information (‘/proc/‘ direct files):

‘cpuinfo‘: Detailed information about the CPU(s).

‘meminfo‘: Information about system memory usage (total, free, buffers,
cache).

‘loadavg‘: System load average (average number of processes in the run
queue or running) over 1, 5, and 15 minutes.

‘uptime‘: System uptime and idle time.

‘version‘: Linux kernel version string.

‘filesystems‘: List of filesystems supported by the kernel.

‘net/‘: Directory containing network stack information.

SDB OS Appendix 23 / 26

Navigating the ‘/proc‘ Filesystem (Other Key Areas) III

Kernel Parameters (‘/proc/sys/‘):

A hierarchical directory to view and **modify kernel parameters at
runtime**.

E.g., ‘cat /proc/sys/vm/swappiness‘ to see swap aggressiveness.

E.g., ‘echo 1 > /proc/sys/net/ipv4/ip forward‘ to enable IP forwarding
(requires root).

‘/proc‘ is the backbone of many Linux system monitoring and debugging tools.

SDB OS Appendix 24 / 26

Practical Exploration - Things to Try Out I
1. Explore Your Own Shell (‘$$‘):

‘cat /proc/$$/status‘ (your shell’s status)

‘cat /proc/$$/cmdline‘ (how your shell was started)

‘ls -l /proc/$$/fd/‘ (your shell’s open files, including stdin/out/err)

‘ls -l /proc/$$/exe‘ (the actual executable of your shell)

‘cat /proc/$$/maps‘ (your shell’s memory map)

2. Observe Other Processes:

Open another terminal and run ‘sleep 600‘.

In your original terminal, find its PID: ‘pgrep sleep‘

Now, use that PID to investigate: ‘cat /proc/¡sleep PID¿/status‘, ‘cat
/proc/¡sleep PID¿/cmdline‘

Observe its ‘State: S (sleeping)‘.

Run ‘top‘ or ‘htop‘ and see if you can match the ‘PID‘ and ‘Name‘ from
‘/proc‘.

SDB OS Appendix 25 / 26

Practical Exploration - Things to Try Out II

3. System-Wide Information:

‘cat /proc/cpuinfo‘ (CPU details)

‘cat /proc/meminfo‘ (Memory usage)

‘cat /proc/loadavg‘ (System load)

‘cat /proc/uptime‘ (System uptime)

4. Kernel Parameters (be cautious with ‘sys/‘):

‘cat /proc/sys/kernel/hostname‘

‘cat /proc/sys/vm/swappiness‘

‘sysctl -a — less‘ (lists all readable kernel parameters)

Remember: Modifying files in ‘/proc/sys/‘ can change kernel behavior. Only do

so if you understand the implications or in a safe virtual machine environment.

SDB OS Appendix 26 / 26

	Summary
	Appendix
	Appendix

