System Calls and Operating System Structures
Week 2

SDB

Autumn 2025

Agenda

@ What are System Calls?

@ System Call Lifecycle and Examples

@ OS Structures: Monolithic, Layered, Microkernel
@ Performance and Modularity Trade-offs

® Summary and Q&A

Learning Goal

Understand how user programs interact with the OS and how OS
structure affects performance and extensibility.

SDB 0s 1/10 =

What is a System Call?

Definition

A system call is a controlled interface through which user programs
request services from the operating system kernel, such as file access,
process creation, or device control.

SDB 0s 2/10 =

What is a System Call?

Definition

A system call is a controlled interface through which user programs
request services from the operating system kernel, such as file access,
process creation, or device control.

Common Categories and Examples:
o Process Control: fork(), exec(), exit()
o File Operations: open(), read(), write()
o Device 1/0: ioctl(), read(), write()
o Info Maintenance: getpid(), alarm(), gettimeofday()

SDB 0s 2/10 =

What is a System Call?

Definition

A system call is a controlled interface through which user programs
request services from the operating system kernel, such as file access,
process creation, or device control.

Common Categories and Examples:
o Process Control: fork(), exec(), exit()
o File Operations: open(), read(), write()
Device 1/0: ioctl(), read(), write()
Info Maintenance: getpid(), alarm(), gettimeofday ()

©

©

Did You Know?

Most system calls in Linux are thin wrappers around a lower-level
syscall instruction that triggers a CPU trap to kernel mode.

SDB 0s 2/10 =

Example: Process Creation in Linux
C code using system calls:

#include <unistd.h>

#include <stdio.h>

int main() {
pid_t pid = fork();

if (pid == 0) {
printf ("Child Process\n");
} else {

printf ("Parent Process\n");

3

return O;

SDB 0s 3/10 wm

Example: Process Creation in Linux
C code using system calls:

#include <unistd.h>

#include <stdio.h>

int main() {
pid_t pid = fork();

if (pid == 0) {
printf ("Child Process\n");
} else {

printf ("Parent Process\n");
¥
return O;

}
Behind the Scenes:
o fork() creates a new process by duplicating the calling process.
o Internally, Linux uses the clone () syscall to implement fork().
o The child gets a new PID and a copy of the parent’s memory space.

SDB 0s 3/10 wm

System Call Flow Diagram

- User Application
° User Application Initiates requests for system-level services
§ (e.g., file access, networking) via high-level
Z Function Call APls.
3 : :
= Library Function Library Function (libc)
(e-g., libc) Provides standard interfaces (e.g., open(),
Syscall Instruction read()) that abstract away syscall details.
System Call Interface
o | System Call Interface Acts as a controlled gateway to the kernel.
§ Validates requests and switches to kernel
wv Kernel Executes mode.
°©
g)) Kernel Service Routine
v | Kernel Service Routine - . .
Executes privileged operations like 1/0,

memory management, and process control.

System calls enforce privilege separation, ensuring secure interaction
between user and kernel space.

SDB 0OS 4/10 wem

System Call Categories
Grouped by Functionality:

o Process Control o Information Maintenance
Create, terminate, wait, fork, Get/set time, process ID, user
exec ID, system info

o File Management o Communication
Create, delete, read, write, Pipes, sockets, signals, shared
open, close memory

o Device Management
Request, release, attach,
detach

SDB 0OS 5/ 10 e

System Call Categories
Grouped by Functionality:

o Process Control o Information Maintenance
Create, terminate, wait, fork, Get/set time, process ID, user
exec ID, system info

o File Management o Communication
Create, delete, read, write, Pipes, sockets, signals, shared
open, close memory

o Device Management
Request, release, attach,
detach

Which of these categories do you think is most performance-sensitive?
Why?

SDB 0OS 5/ 10 e

System Call Categories

o Process Control

Create, terminate, wait, fork, exec
e.g., fork(), execvp()

Note: Security-critical; affects
process isolation.

File Management

Create, delete, read, write, open,
close

e.g., open(), read ()

Note: Performance-sensitive;
frequent 1/O operations.

Device Management
Request, release, attach, detach
e.g., ioctl(), mount ()

Note: Security-sensitive;
interacts with hardware.

SDB 0OS

o Information Maintenance
Get/set time, PID, UID, system
info
e.g., getpid(), gettimeofday ()
Note: Lightweight; used for
bookkeeping.

o Communication
Pipes, sockets, signals, shared
memory
e.g., pipe(, send(), kill()
Note: Performance-sensitive;
used in IPC and networking.

6 /10

System Call Categories

o Process Control o Information Maintenance
Create, terminate, wait, fork, exec Get/set time, PID, UID, system
e.g., fork(), execvp() info
Note: Security-critical; affects e.g., getpid(), gettimeofday ()
process isolation. Note: Lightweight; used for

o File Management bookkeeping.

Create, delete, read, write, open, o Communication

close Pipes, sockets, signals, shared
e.g., open(), read () memory

Note: Performance-sensitive; e.g., pipe(), send (), kill()
frequent 1/O operations. Note: Performance-sensitive;

o Device Management used in IPC and networking.

Request, release, attach, detach
e.g., ioctl(), mount ()
Note: Security-sensitive; Which of these categories do

interacts with hardware. you think is most performance-
sensitive? Why?

SDB 0OS 6 /10 e

OS Structure Types

Operating systems can be architected in different
ways, each with trade-offs in performance,
modularity, and reliability.

’ User Apps ‘

| Lib/System API |

Three Classical Architectures:

o Monolithic: All OS services run in kernel
. ’ Kernel ‘
space as one large binary.

o Layered: OS is divided into layers, each built
on top of the lower one.

’ Hardware ‘

Figure: A Typical

o Microkernel: Only essential services in kernel; -
Monolithic OS.

others run in user space.

SDB 0S 7 /10 w—

OS Structure Types

Operating systems can be architected in different
ways, each with trade-offs in performance, ’
modularity, and reliability.

User Apps ‘

| Lib/System API |

Three Classical Architectures:
o Monolithic: All OS services run in kernel |
space as one large binary.
o Layered: OS is divided into layers, each built
on top of the lower one. |
o Microkernel: Only essential services in kernel;
others run in user space.

Kernel ‘

Hardware ‘

Figure: A Typical
Monolithic OS.

Did You Know?

The original UNIX was monolithic, but modern OSes like macOS and
Windows use hybrid kernels to balance performance and reliability.

7 /10 w—

SDB 0S

OS Architecture Comparison

1. Monolithic Kernel

All OS services (file system, memory,
device drivers) run in kernel space as a
single large binary.

Example: Early UNIX, Linux

Pros: Fast due to direct function calls
Cons: Poor modularity; bugs can crash
entire system

2. Layered Architecture

OS is divided into hierarchical layers,
each built on top of the lower one.
Example: THE OS (Dijkstra), early
Windows NT

Pros: Clear separation of concerns
Cons: Rigid structure; performance
overhead

3. Microkernel

Only essential services (e.g., IPC,
scheduling) run in kernel space; others
(e.g., drivers, file system) run in user
space.

Example: MINIX, QNX, selL4

Pros: High modularity, better fault
isolation

Cons: Performance overhead due to
IPC

4. Hybrid Kernel (Modern)
Combines monolithic speed with
microkernel modularity.

Example: Windows NT, macOS (XNU)
Pros: Balanced performance and
modularity

Cons: Increased complexity

Trade-off: Performance vs. Modularity and Maintainability

SDB 0OS

8 /10

Key Takeaways

o System Calls serve as the secure interface between user applications and
the OS kernel, enabling controlled access to hardware and services.

o OS Structure directly impacts performance, modularity, and fault isolation.
The choice of architecture influences how the OS handles complexity and
failures.

o Real-World Usage:

» Linux uses a hybrid monolithic model — fast but extensible.
» Microkernels (e.g., QNX, MINIX) are favored in embedded and
safety-critical systems for their reliability and modularity.

SDB OS Summary 9 /10 m—

Key Takeaways

o System Calls serve as the secure interface between user applications and
the OS kernel, enabling controlled access to hardware and services.

o OS Structure directly impacts performance, modularity, and fault isolation.
The choice of architecture influences how the OS handles complexity and
failures.

o Real-World Usage:

» Linux uses a hybrid monolithic model — fast but extensible.
» Microkernels (e.g., QNX, MINIX) are favored in embedded and
safety-critical systems for their reliability and modularity.

How does the OS structure influence the way you design applications or
system tools? Would you prefer performance, modularity, or fault tolerance?

SDB OS Summary 9 /10 m—

Next Week Preview: Process Management
Topics to Explore:

o Process Lifecycle: States (new, ready, running, waiting, terminated) and
transitions

o Process Control Block (PCB): Data structure storing process metadata
(PID, state, registers, etc.)

o Scheduling Queues: Ready, waiting, and job queues; how processes are
selected for execution

o Context Switching: Saving and restoring process state during CPU
switches

o Hands-on: Shell-based process creation using fork(), exec(), and tracing
with strace, ps, top

SDB OS Summary 10 / 10 s

Next Week Preview: Process Management
Topics to Explore:

o Process Lifecycle: States (new, ready, running, waiting, terminated) and
transitions

o Process Control Block (PCB): Data structure storing process metadata
(PID, state, registers, etc.)

o Scheduling Queues: Ready, waiting, and job queues; how processes are
selected for execution

o Context Switching: Saving and restoring process state during CPU
switches

o Hands-on: Shell-based process creation using fork(), exec(), and tracing
with strace, ps, top

Prep Tip

Try running ps -ef, top, and strace 1s on your system. Observe how
processes are created, scheduled, and interact with the kernel in real time.

SDB OS Summary 10 / 10 s

Outline

@ Appendix

Discussion Prompt

Which OS architecture would you choose for:
o A desktop OS like Ubuntu?
o A safety-critical OS in a car or drone?

o A distributed file system controller?

SDB OS Appendix 1/12 &

Discussion Prompt

Which OS architecture would you choose for:
o A desktop OS like Ubuntu?
o A safety-critical OS in a car or drone?

o A distributed file system controller?

Discuss with a partner. Justify your choice based on performance,
reliability, and extensibility.

SDB OS Appendix 1/12 &

Quiz: System Calls and OS Structures

Test Your Understanding:
@ What is the difference between a library function and a system call?
@ Why do system calls require a switch to kernel mode?
® Which OS structure offers the best modularity and fault isolation?
@

True or False: Microkernels are slower because they use message
passing.

©

Challenge: Can you name a real-world OS that uses a microkernel
architecture?

SDB OS Appendix 2/12 =

Quiz: System Call Internals

Challenge your understanding:
@ What is the role of the syscall number in the system call interface?
@ How does the OS validate arguments passed from user space?

@ Why is it unsafe to allow user programs to directly invoke kernel
functions?

@ True or False: All system calls are synchronous and blocking.

® Bonus: What is the difference between a trap and an interrupt?

SDB OS Appendix 3/12 mm

Quiz: OS Structure Design Trade-offs

Apply your knowledge:

@ Why might a microkernel be preferred in a mission-critical embedded
system?

@ What are the performance implications of message passing in
microkernels?

@ How does layering improve maintainability but potentially reduce
performance?

@ True or False: In a monolithic kernel, a bug in one module can crash
the entire system.

® Bonus: Can you name a real-world OS that uses a hybrid kernel
model?

SDB OS Appendix 4/12 wem

Exercise: Trace a System Call

Objective: Understand how a system call travels from user space to
kernel space and back.

Use strace or dtrace to trace the execution of a simple program

that opens and reads a file. Document the system calls made and
identify:

o The syscall names and arguments

o The transition point to kernel mode

o The return values and error handling

SDB OS Appendix 5/12

Exercise: Trace a System Call

Objective: Understand how a system call travels from user space to
kernel space and back.

Use strace or dtrace to trace the execution of a simple program

that opens and reads a file. Document the system calls made and
identify:

o The syscall names and arguments
o The transition point to kernel mode

o The return values and error handling

\.

Bonus: Compare the trace output on Linux vs. macOS or Windows (if
available).

SDB OS Appendix 5/12

Explore Further: Advanced Topics

Want to go deeper? Consider exploring:

o How system calls are implemented in assembly (e.g., syscall
instruction)

©

Kernel modules and loadable drivers

System call filtering and security (e.g., seccomp, ptrace)
OS structure in real-world kernels (Linux, Minix, QNX)
Performance benchmarking of syscall overhead

© © o

SDB OS Appendix 6 /12 m—

Explore Further: Advanced Topics

Want to go deeper? Consider exploring:

o How system calls are implemented in assembly (e.g., syscall
instruction)

Kernel modules and loadable drivers

©

System call filtering and security (e.g., seccomp, ptrace)
OS structure in real-world kernels (Linux, Minix, QNX)

© © o

Performance benchmarking of syscall overhead

Can you write a minimal kernel module that logs system calls?

SDB OS Appendix 6 /12 m—

System Call Example: File I/O

Objective: Read from a file and write its contents to standard output using
system calls.

#include <fcntl.h>
#include <unistd.h>

int main() {
char buffer [128];
int fd = open("example.txt", O_RDONLY);
int n = read(fd, buffer, sizeof (buffer));
write (STDOUT_FILENO, buffer, n);
close (fd);
return O;

Syscalls used: open(), read(), write(), close()

SDB OS Appendix 7 /12 —

System Call Example: Process Creation

Objective: Create a child process and execute a new program.

#include <unistd.h>
#include <sys/wait.h>

int main() A{
pid_t pid = fork();

if (pid == 0) A
execlp("1ls", "1s", "-1", NULL);
} else {

wait (NULL) ;
}

return O;

Syscalls used: fork(), execlp(), wait()

SDB OS Appendix 8 /12

System Call Example: Interprocess Communication
Objective: Use a pipe to send data from parent to child.

#include <unistd.h>

int main() {

int fd[2];

pipe (£d);

if (fork() == 0) {
close(fd[1]);
dup2(fd [0], STDIN_FILENO) ;
execlp("wc", "wc", "-w", NULL);

} else {
close (£d4[0]);
write(fd[1], "hello world\n", 12);
close(fd[1]);

}

return O;

Syscalls used: pipe(), fork(), dup2(), execlp(), write()
SDB OS Appendix 9 /12

System Call Example: Memory Mapping

Goal: Map a file into memory and read from it.

#include <fcntl.h>
#include <sys/mman.h>
#include <unistd.h>
#include <stdio.h>

int main() {
int fd = open("example.txt", O_RDONLY);
char *data = mmap (NULL, 100, PROT_READ,
MAP_PRIVATE, fd, 0);
write (STDOUT_FILENO, data, 100);
munmap (data, 100);
close (fd);
return O;

}

Syscalls: open(), mmap (), munmap (), write(), close()

SDB OS Appendix 10 / 12w

System Call Example: Signals
Goal: Handle and send a signal between processes.
#include <signal.h>

#include <unistd.h>
#include <stdio.h>

void handler (int sig) {
write (STDOUT_FILENO, "Signal caught!\n", 15);
}

int main() {
signal (SIGUSR1, handler);

if (fork() == 0) {
kill (getppid (), SIGUSR1);
} else {

pause(); // Wait for signal
}
return O;

3

Syscalls: signal(), kill(), pause(), getppid ()
SDB OS Appendix 11 / 12 s

System Call Example: Error Handling

Goal: Demonstrate how to handle syscall errors using errno.

#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>

int main() {
int fd = open("nonexistent.txt", O_RDONLY);
if (fd == -1) {
printf ("Error: %s\n", strerror(errno));

3

return O;

}

Syscalls: open(), strerror(), errno

SDB OS Appendix 12 / 12 s

	Summary
	Appendix
	Appendix

