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Agenda

@ What are System Calls?

@ System Call Lifecycle and Examples

@ OS Structures: Monolithic, Layered, Microkernel
@ Performance and Modularity Trade-offs

® Summary and Q&A

Learning Goal

Understand how user programs interact with the OS and how OS
structure affects performance and extensibility.
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What is a System Call?

Definition

A system call is a controlled interface through which user programs
request services from the operating system kernel, such as file access,
process creation, or device control.
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What is a System Call?

Definition

A system call is a controlled interface through which user programs
request services from the operating system kernel, such as file access,
process creation, or device control.

Common Categories and Examples:
o Process Control: fork(), exec(), exit()
o File Operations: open(), read(), write()
o Device 1/0: ioctl(), read(), write()
o Info Maintenance: getpid(), alarm(), gettimeofday()
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What is a System Call?

Definition

A system call is a controlled interface through which user programs
request services from the operating system kernel, such as file access,
process creation, or device control.

Common Categories and Examples:
o Process Control: fork(), exec(), exit()
o File Operations: open(), read(), write()
Device 1/0: ioctl(), read(), write()
Info Maintenance: getpid(), alarm(), gettimeofday ()

©

©

Did You Know?

Most system calls in Linux are thin wrappers around a lower-level
syscall instruction that triggers a CPU trap to kernel mode.

SDB 0s 2/10 =



Example: Process Creation in Linux
C code using system calls:

#include <unistd.h>

#include <stdio.h>

int main() {
pid_t pid = fork();

if (pid == 0) {
printf ("Child Process\n");
} else {

printf ("Parent Process\n");

3

return O;
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Example: Process Creation in Linux
C code using system calls:

#include <unistd.h>

#include <stdio.h>

int main() {
pid_t pid = fork();

if (pid == 0) {
printf ("Child Process\n");
} else {

printf ("Parent Process\n");
¥
return O;

}
Behind the Scenes:
o fork() creates a new process by duplicating the calling process.
o Internally, Linux uses the clone () syscall to implement fork().
o The child gets a new PID and a copy of the parent’s memory space.
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System Call Flow Diagram

- User Application
° User Application Initiates requests for system-level services
§ (e.g., file access, networking) via high-level
Z Function Call APls.
3 : :
= Library Function Library Function (libc)
(e-g., libc) Provides standard interfaces (e.g., open(),
Syscall Instruction read()) that abstract away syscall details.
System Call Interface
o | System Call Interface Acts as a controlled gateway to the kernel.
§ Validates requests and switches to kernel
wv Kernel Executes mode.
°©
g ) ) Kernel Service Routine
v | Kernel Service Routine - . .
Executes privileged operations like 1/0,

memory management, and process control.

System calls enforce privilege separation, ensuring secure interaction
between user and kernel space.
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System Call Categories
Grouped by Functionality:

o Process Control o Information Maintenance
Create, terminate, wait, fork, Get/set time, process ID, user
exec ID, system info

o File Management o Communication
Create, delete, read, write, Pipes, sockets, signals, shared
open, close memory

o Device Management
Request, release, attach,
detach
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System Call Categories
Grouped by Functionality:

o Process Control o Information Maintenance
Create, terminate, wait, fork, Get/set time, process ID, user
exec ID, system info

o File Management o Communication
Create, delete, read, write, Pipes, sockets, signals, shared
open, close memory

o Device Management
Request, release, attach,
detach

Which of these categories do you think is most performance-sensitive?
Why?
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System Call Categories

o Process Control

Create, terminate, wait, fork, exec
e.g., fork(), execvp()

Note: Security-critical; affects
process isolation.

File Management

Create, delete, read, write, open,
close

e.g., open(), read ()

Note: Performance-sensitive;
frequent 1/O operations.

Device Management
Request, release, attach, detach
e.g., ioctl(), mount ()

Note: Security-sensitive;
interacts with hardware.

SDB 0OS

o Information Maintenance
Get/set time, PID, UID, system
info
e.g., getpid(), gettimeofday ()
Note: Lightweight; used for
bookkeeping.

o Communication
Pipes, sockets, signals, shared
memory
e.g., pipe(, send(), kill()
Note: Performance-sensitive;
used in IPC and networking.
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System Call Categories

o Process Control o Information Maintenance
Create, terminate, wait, fork, exec Get/set time, PID, UID, system
e.g., fork(), execvp() info
Note: Security-critical; affects e.g., getpid(), gettimeofday ()
process isolation. Note: Lightweight; used for

o File Management bookkeeping.

Create, delete, read, write, open, o Communication

close Pipes, sockets, signals, shared
e.g., open(), read () memory

Note: Performance-sensitive; e.g., pipe(), send (), kill()
frequent 1/O operations. Note: Performance-sensitive;

o Device Management used in IPC and networking.

Request, release, attach, detach
e.g., ioctl(), mount ()
Note: Security-sensitive; Which of these categories do

interacts with hardware. you think is most performance-
sensitive? Why?
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OS Structure Types

Operating systems can be architected in different
ways, each with trade-offs in performance,
modularity, and reliability.

’ User Apps ‘

| Lib/System API |

Three Classical Architectures:

o Monolithic: All OS services run in kernel
. ’ Kernel ‘
space as one large binary.

o Layered: OS is divided into layers, each built
on top of the lower one.

’ Hardware ‘

Figure: A Typical

o Microkernel: Only essential services in kernel; -
Monolithic OS.

others run in user space.
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OS Structure Types

Operating systems can be architected in different
ways, each with trade-offs in performance, ’
modularity, and reliability.

User Apps ‘

| Lib/System API |

Three Classical Architectures:
o Monolithic: All OS services run in kernel |
space as one large binary.
o Layered: OS is divided into layers, each built
on top of the lower one. |
o Microkernel: Only essential services in kernel;
others run in user space.

Kernel ‘

Hardware ‘

Figure: A Typical
Monolithic OS.

Did You Know?

The original UNIX was monolithic, but modern OSes like macOS and
Windows use hybrid kernels to balance performance and reliability.
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OS Architecture Comparison

1. Monolithic Kernel

All OS services (file system, memory,
device drivers) run in kernel space as a
single large binary.

Example: Early UNIX, Linux

Pros: Fast due to direct function calls
Cons: Poor modularity; bugs can crash
entire system

2. Layered Architecture

OS is divided into hierarchical layers,
each built on top of the lower one.
Example: THE OS (Dijkstra), early
Windows NT

Pros: Clear separation of concerns
Cons: Rigid structure; performance
overhead

3. Microkernel

Only essential services (e.g., IPC,
scheduling) run in kernel space; others
(e.g., drivers, file system) run in user
space.

Example: MINIX, QNX, selL4

Pros: High modularity, better fault
isolation

Cons: Performance overhead due to
IPC

4. Hybrid Kernel (Modern)
Combines monolithic speed with
microkernel modularity.

Example: Windows NT, macOS (XNU)
Pros: Balanced performance and
modularity

Cons: Increased complexity

Trade-off: Performance vs. Modularity and Maintainability
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Key Takeaways

o System Calls serve as the secure interface between user applications and
the OS kernel, enabling controlled access to hardware and services.

o OS Structure directly impacts performance, modularity, and fault isolation.
The choice of architecture influences how the OS handles complexity and
failures.

o Real-World Usage:

» Linux uses a hybrid monolithic model — fast but extensible.
» Microkernels (e.g., QNX, MINIX) are favored in embedded and
safety-critical systems for their reliability and modularity.
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Key Takeaways

o System Calls serve as the secure interface between user applications and
the OS kernel, enabling controlled access to hardware and services.

o OS Structure directly impacts performance, modularity, and fault isolation.
The choice of architecture influences how the OS handles complexity and
failures.

o Real-World Usage:

» Linux uses a hybrid monolithic model — fast but extensible.
» Microkernels (e.g., QNX, MINIX) are favored in embedded and
safety-critical systems for their reliability and modularity.

How does the OS structure influence the way you design applications or
system tools? Would you prefer performance, modularity, or fault tolerance?
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Next Week Preview: Process Management
Topics to Explore:

o Process Lifecycle: States (new, ready, running, waiting, terminated) and
transitions

o Process Control Block (PCB): Data structure storing process metadata
(PID, state, registers, etc.)

o Scheduling Queues: Ready, waiting, and job queues; how processes are
selected for execution

o Context Switching: Saving and restoring process state during CPU
switches

o Hands-on: Shell-based process creation using fork(), exec(), and tracing
with strace, ps, top
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Next Week Preview: Process Management
Topics to Explore:

o Process Lifecycle: States (new, ready, running, waiting, terminated) and
transitions

o Process Control Block (PCB): Data structure storing process metadata
(PID, state, registers, etc.)

o Scheduling Queues: Ready, waiting, and job queues; how processes are
selected for execution

o Context Switching: Saving and restoring process state during CPU
switches

o Hands-on: Shell-based process creation using fork(), exec(), and tracing
with strace, ps, top

Prep Tip

Try running ps -ef, top, and strace 1s on your system. Observe how
processes are created, scheduled, and interact with the kernel in real time.
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Outline

@ Appendix



Discussion Prompt

Which OS architecture would you choose for:
o A desktop OS like Ubuntu?
o A safety-critical OS in a car or drone?

o A distributed file system controller?
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Discussion Prompt

Which OS architecture would you choose for:
o A desktop OS like Ubuntu?
o A safety-critical OS in a car or drone?

o A distributed file system controller?

Discuss with a partner. Justify your choice based on performance,
reliability, and extensibility.
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Quiz: System Calls and OS Structures

Test Your Understanding:
@ What is the difference between a library function and a system call?
@ Why do system calls require a switch to kernel mode?
® Which OS structure offers the best modularity and fault isolation?
@

True or False: Microkernels are slower because they use message
passing.

©

Challenge: Can you name a real-world OS that uses a microkernel
architecture?
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Quiz: System Call Internals

Challenge your understanding:
@ What is the role of the syscall number in the system call interface?
@ How does the OS validate arguments passed from user space?

@ Why is it unsafe to allow user programs to directly invoke kernel
functions?

@ True or False: All system calls are synchronous and blocking.

® Bonus: What is the difference between a trap and an interrupt?
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Quiz: OS Structure Design Trade-offs

Apply your knowledge:

@ Why might a microkernel be preferred in a mission-critical embedded
system?

@ What are the performance implications of message passing in
microkernels?

@ How does layering improve maintainability but potentially reduce
performance?

@ True or False: In a monolithic kernel, a bug in one module can crash
the entire system.

® Bonus: Can you name a real-world OS that uses a hybrid kernel
model?
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Exercise: Trace a System Call

Objective: Understand how a system call travels from user space to
kernel space and back.

Use strace or dtrace to trace the execution of a simple program

that opens and reads a file. Document the system calls made and
identify:

o The syscall names and arguments

o The transition point to kernel mode

o The return values and error handling
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Exercise: Trace a System Call

Objective: Understand how a system call travels from user space to
kernel space and back.

Use strace or dtrace to trace the execution of a simple program

that opens and reads a file. Document the system calls made and
identify:

o The syscall names and arguments
o The transition point to kernel mode

o The return values and error handling

\.

Bonus: Compare the trace output on Linux vs. macOS or Windows (if
available).
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Explore Further: Advanced Topics

Want to go deeper? Consider exploring:

o How system calls are implemented in assembly (e.g., syscall
instruction)

©

Kernel modules and loadable drivers

System call filtering and security (e.g., seccomp, ptrace)
OS structure in real-world kernels (Linux, Minix, QNX)
Performance benchmarking of syscall overhead

© © o
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Explore Further: Advanced Topics

Want to go deeper? Consider exploring:

o How system calls are implemented in assembly (e.g., syscall
instruction)

Kernel modules and loadable drivers

©

System call filtering and security (e.g., seccomp, ptrace)
OS structure in real-world kernels (Linux, Minix, QNX)

© © o

Performance benchmarking of syscall overhead

Can you write a minimal kernel module that logs system calls?
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System Call Example: File I/O

Objective: Read from a file and write its contents to standard output using
system calls.

#include <fcntl.h>
#include <unistd.h>

int main() {
char buffer [128];
int fd = open("example.txt", O_RDONLY);
int n = read(fd, buffer, sizeof (buffer));
write (STDOUT_FILENO, buffer, n);
close (fd);
return O;

Syscalls used: open(), read(), write(), close()
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System Call Example: Process Creation

Objective: Create a child process and execute a new program.

#include <unistd.h>
#include <sys/wait.h>

int main() A{
pid_t pid = fork();

if (pid == 0) A
execlp("1ls", "1s", "-1", NULL);
} else {

wait (NULL) ;
}

return O;

Syscalls used: fork(), execlp(), wait()
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System Call Example: Interprocess Communication
Objective: Use a pipe to send data from parent to child.

#include <unistd.h>

int main() {

int fd[2];

pipe (£d);

if (fork() == 0) {
close(fd[1]);
dup2(fd [0], STDIN_FILENO) ;
execlp("wc", "wc", "-w", NULL);

} else {
close (£d4[0]);
write(fd[1], "hello world\n", 12);
close(fd[1]);

}

return O;

Syscalls used: pipe(), fork(), dup2(), execlp(), write()
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System Call Example: Memory Mapping

Goal: Map a file into memory and read from it.

#include <fcntl.h>
#include <sys/mman.h>
#include <unistd.h>
#include <stdio.h>

int main() {
int fd = open("example.txt", O_RDONLY);
char *data = mmap (NULL, 100, PROT_READ,
MAP_PRIVATE, fd, 0);
write (STDOUT_FILENO, data, 100);
munmap (data, 100);
close (fd);
return O;

}

Syscalls: open(), mmap (), munmap (), write(), close()
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System Call Example: Signals
Goal: Handle and send a signal between processes.
#include <signal.h>

#include <unistd.h>
#include <stdio.h>

void handler (int sig) {
write (STDOUT_FILENO, "Signal caught!\n", 15);
}

int main() {
signal (SIGUSR1, handler);

if (fork() == 0) {
kill (getppid (), SIGUSR1);
} else {

pause(); // Wait for signal
}
return O;

3

Syscalls: signal(), kill(), pause(), getppid ()
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System Call Example: Error Handling

Goal: Demonstrate how to handle syscall errors using errno.

#include <fcntl.h>
#include <stdio.h>
#include <errno.h>
#include <string.h>

int main() {
int fd = open("nonexistent.txt", O_RDONLY);
if (fd == -1) {
printf ("Error: %s\n", strerror(errno));

3

return O;

}

Syscalls: open(), strerror(), errno
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