Execution Management — Wrap-Up and Review
Week 12

SDB

Autumn 2025

Agenda: Execution Management - Review & Forward Path
@ Recap: The Execution Management Journey

Module Interlink: The Big Picture

Connecting Theory to Practice: Lab Experience

Concept Integration Challenge

Advanced Exploration: Projects & Research

Open Discussion & Critical Thinking

Looking Ahead: Transition to Other OS Modules

© ©6 6 6 €

@

Concluding Reflections

Why This Review Matters

This module provided the bedrock for understanding how operating systems make ap-
plications run. Grasping execution management is crucial for debugging performance
issues, designing efficient concurrent systems, and appreciating the intricate dance be-
tween hardware and software. It's the engine room of the OS.

SDB 0s 1/21 4

Recap: The Execution Management Journey |
Part 1: Fundamentals & Process Lifecycle

o Week 1: Introduction to Operating Systems

» Roles: Resource allocator, control program. Types: Batch,
Time-sharing, Real-time, Distributed.
» Kernel vs. User Mode: Privilege levels, protection. Abstraction: Hiding
hardware complexity.
o Week 2: System Calls & OS Structures
» System Calls: Interface between user-mode applications and kernel
services (e.g., ‘fork()", ‘exec(), ‘open()’, ‘read()").
» OS Structures: Monolithic kernels (Linux), Layered approach,
Microkernels (Minix, Mach), Hybrid systems (Windows).
o Week 3: Processes & Process Control Block (PCB)
» Process: A program in execution. The fundamental unit of resource
ownership.
» Process States: New, Running, Waiting, Ready, Terminated.
» PCB: The repository of all process-specific information (PID, state,
registers, memory limits, open files, etc.).

SDB 0s 2/21 n

Recap: The Execution Management Journey |l

o Week 4: Context Switching & Dispatcher

» Context Switch: Saving the state of the current process and loading
the state of another. High overhead, pure overhead.
» Dispatcher: The kernel module responsible for giving control of the
CPU to the process selected by the scheduler. Dispatch latency is key.
o Week 5: CPU Scheduling Algorithms (1)
» Metrics: Throughput, Turnaround Time, Waiting Time, Response
Time, CPU Utilization.
» Algorithms: First-Come, First-Served (FCFS), Shortest-Job-First (SJF)
- (preemptive and non-preemptive), Round Robin (RR).
o Week 6: CPU Scheduling Algorithms (Il)
» Priority Scheduling: Potential for starvation, mitigated by aging.
» Multilevel Queue/Feedback Queue Scheduling: Categorizing processes
and using different algorithms for different queues.
o Week 7: Real-Time Scheduling & OS Case Studies

» Real-Time: Hard vs. Soft RT. Rate Monotonic Scheduling (RMS),
Earliest Deadline First (EDF).

SDB 0s 3/21 =

Recap: The Execution Management Journey Il

» Linux CFS: Completely Fair Scheduler for 'SCHED_OTHER' tasks.
» Windows Priority Classes: Dynamic priority boosting.

o Week 8: Threads & Multithreading Models

» Thread: Lightweight unit of execution within a process, sharing
resources.

» Models: One-to-One (Linux, Windows), Many-to-One, Many-to-Many.

» User-level vs. Kernel-level threads: Performance vs. OS awareness.

o Week 9: Semaphores & Mutual Exclusion

» Critical Section Problem: Ensuring atomic access to shared resources.
» Semaphores: ‘wait()' (P/decrement) and ‘signal()* (V/increment)
operations for synchronization. Binary vs. Counting.

o Week 10: Classical Synchronization Problems

» Dining Philosophers: Deadlock and starvation with multiple resource
acquisition.

» Readers-Writers: Concurrent reads, exclusive writes; prioritizing one
over other can cause starvation.

SDB 0s 4/21 =

Recap: The Execution Management Journey IV

» Bounded Buffer (Producer-Consumer): Using semaphores for
coordination.
o Week 11: Linux & Windows API Interfaces
» Linux: ‘fork()’, ‘exec()’, ‘wait()* for processes; ‘pthread’ for threads,

‘clone()’ for low-level control.
» Windows: ‘CreateProcess()’ for processes; ‘CreateThread()' for

threads.
» Control: Priority (‘nice’, ‘SetThreadPriority'), CPU Affinity (‘taskset’,

‘SetThreadAffinityMask).
o Week 12: Review & Integration

» Holistic view of execution flow.
» Connecting theory to practical lab implementations.

Outcome: Students now understand and can manipulate the full lifecycle
of execution in an OS—from process creation to scheduling and

synchronization.

SDB 0s 5/21 wm

Module Interlink: The Execution Flow Ecosystem
OS APIs (e.g., pthreads)

Requests Services

Returns Results

System Calls CPU Scheduling

: »
Proc N Threads

Synchronization (Reiee) A Deadlocks
This diagram illustrates the interconnected nature of the concepts covered,
all orchestrated by the OS Kernel.

SDB 0s 6/21 wm

Connecting Theory to Practice: How Labs Mapped to
Topics |

o Lab 1 & 2: Process Creation & Execution

» Concepts: ‘fork()", ‘exec()’, ‘wait()’, process states, parent-child
relationships, system calls.

» QOutcome: Gained hands-on experience with the Unix process model
and built a rudimentary shell to understand process lifecycle control.

o Lab 3: CPU Scheduling Simulation

» Concepts: FCFS, SJF, Round Robin algorithms, turnaround time,
waiting time, context switching.

» Outcome: Understood the mechanics of different scheduling policies
and their performance implications through direct simulation.

o Lab 4 & 5: Pthread Threading & Context Switching Analysis

» Concepts: Thread creation (‘pthread_create'), joining (‘pthread_join'),
shared memory, thread overhead.

SDB 0s 7/21 -

Connecting Theory to Practice: How Labs Mapped to
Topics |l

» QOutcome: Experienced multithreading, observed context switching
effects, and began to understand thread synchronization challenges.

o Lab 6: Semaphores & Producer-Consumer Simulation

» Concepts: Mutual exclusion, critical sections, ‘wait()'/'signal()’
operations, classical synchronization problem (Bounded Buffer).

» QOutcome: Implemented synchronization primitives to protect shared
resources and coordinate concurrent processes/threads.

o Lab 7+4: Shell Miniproject & Dispatcher Log Tracing

» Concepts: Integration of processes, pipes (IPC), system call tracing,
understanding dispatcher behavior from logs.

» QOutcome: Consolidated knowledge by building a more complex system,
demonstrating how various OS features interoperate.

SDB 0S 8 /21 wem

Concept Integration Challenge: Quick Quiz

@ Round Robin Efficiency vs. Fairness: Why is Round Robin considered
more fair than FCFS, but sometimes less efficient in terms of overall
throughput or average turnaround time?

@ Many-to-Many Threading Tradeoffs: What are the primary advantages
and disadvantages of a Many-to-Many threading model compared to a
One-to-One model?

@ Starvation in Scheduling: Define starvation in the context of CPU
scheduling. Provide an example of a scheduling algorithm where it can
occur, and describe a common mitigation technique.

@ Windows vs. Unix Process Creation: Which single Windows API call
conceptually combines the functionality of Linux's ‘fork()* and ‘exec()’
system calls? What additional control does it provide compared to the Unix
pair?

® Synchronization Primitive Choice: When would you definitively choose a
mutex over a binary semaphore for protecting a critical section, and why?

SDB 0S 9 /21 wem

Quick Quiz: Discussion Points |

Let’s review the answers and common pitfalls:

@ Round Robin Efficiency vs. Fairness:

» Fairness: RR provides better fairness and response time, especially for
interactive tasks, by ensuring all processes get a slice of CPU time. No
single long task can monopolize the CPU.

» Efficiency/Throughput: Can be less efficient due to frequent context
switches, especially with a very small time quantum. Each switch
incurs overhead (saving/loading registers, flushing caches), reducing
the actual time spent on useful work.

@ Many-to-Many Threading Tradeoffs:

» Advantages: Combines benefits of both: multiple user-level threads
can map to fewer (or equal) kernel threads. Allows concurrent
execution on multicore systems while giving programmer control over
user-level concurrency. Blocking one user-level thread doesn't block the
entire process.

SDB 0S 10 / 21

Quick Quiz: Discussion Points Il

» Disadvantages: More complex to implement and manage (requires a
sophisticated user-level thread library and kernel cooperation).
Performance can be unpredictable due to two levels of scheduling.

@ Starvation in Scheduling:

» Definition: A situation where a process is indefinitely postponed from
gaining access to a resource (e.g., CPU) because other processes
always take precedence.

» Example: Pure Priority Scheduling (without aging). A low-priority
process might never run if a continuous stream of high-priority
processes keeps arriving.

» Mitigation: Aging (gradually increasing the priority of processes that
have been waiting for a long time).

@ Windows vs. Unix Process Creation:

» Windows API: ‘CreateProcess()".

SDB 0S 11 /21

Quick Quiz: Discussion Points Il

» Additional Control: ‘CreateProcess()' directly specifies the
executable, command-line arguments, security attributes, environment
block, current directory, and even the initial window appearance
(‘STARTUPINFO"). It offers much more granular control over the new
process's environment at creation time, whereas ‘fork()* duplicates
most of the parent’s state and ‘exec()’ then replaces it.

® Synchronization Primitive Choice:

» You would definitively choose a mutex over a binary semaphore for
protecting a critical section when ownership semantics are important.

» Why: Mutexes have the concept of an "owner” (the thread that
locked it). Only the owning thread can unlock a mutex. This prevents
common errors like one thread accidentally releasing a lock held by
another, or a thread forgetting to unlock. Semaphores lack this
ownership; any thread can call ‘signal()‘ on a binary semaphore.
Mutexes often also include features like recursion, priority inversion
avoidance, and cleaner integration with condition variables.

SDB 0S 12 /21

Capstone Projects and Research Paths |

Your understanding of Execution Management opens doors to fascinating projects
and research.

Hands-on Development Projects:

o User-space Scheduler/Runtime: Implement a simplified version of a
CFS-like scheduler (e.g., for user-level threads or for managing a pool of
tasks). This involves designing data structures (e.g., a balanced tree for
run-queue), context switching (if managing user-level threads directly), and
dispatching logic.

o Kernel Call Tracer/Visualizer: Develop a tool that hooks into system calls
(e.g., using ‘ptrace’ or ‘strace’ output on Linux) and visualizes the sequence
of calls made by a process or workload, identifying patterns or bottlenecks
related to execution.

o Simplified Thread Library (M:N Model): Create a basic Many-to-Many
thread management runtime. You'd manage user-level thread contexts and
map them onto a smaller pool of kernel threads, implementing your own
user-level scheduling logic.

SDB 0S 13 / 21

Capstone Projects and Research Paths |l

o Mini Container Execution Manager: Build a rudimentary container
runtime that uses Linux ‘namespaces’ (e.g., ‘CLONE_NEWPID',
‘CLONE_NEWNET"*, ‘CLONE_NEWNS') and ‘cgroups’ (for resource limits
like CPU and memory) to isolate and manage the execution of a new
process.

Advanced Research and Exploration Topics:

o Real-time Scheduler Simulation & Analysis: Simulate and analyze
advanced real-time scheduling algorithms (e.g., EDF with resource sharing
protocols) to understand their predictability and performance under various
loads.

o Cgroup-based System Monitoring & Control: Explore how ‘cgroups’ are
used in modern Linux systems to define resource limits (CPU shares, quotas,
memory limits) and how you can programmatically interact with them to
fine-tune application performance or resource isolation.

SDB 0S 14 /21

Capstone Projects and Research Paths Il

o Hardware-Assisted Virtualization for Execution: Investigate how modern
CPUs provide hardware support (e.g., Intel VT-x, AMD-V) for virtualization,
enabling efficient execution of guest OSes and their processes.

o Performance Impacts of OS Scheduling Parameters: Conduct empirical
studies to measure the impact of different scheduling policies, time quanta,
and CPU affinity settings on real-world application performance (e.g.,
database servers, web servers).

SDB 0S 15 / 21

Open Discussion Topics: OS Design & Evolution |

Let's engage in some critical thinking about operating system design principles
based on our module.

o Scheduling Strategy Redesign for Modern CPUs: Given the prevalence
of multi-core processors, non-uniform memory access (NUMA) architectures,
and heterogeneous cores (e.g., ARM big.LITTLE), which scheduling strategy
or existing scheduler component would you prioritize redesigning, and why?
What new metrics or considerations would be crucial?

o Threading Models & Multicore Performance: How do the different
threading models (1:1, M:1, M:N) inherently influence an application’s
ability to fully utilize multiple CPU cores? Are there scenarios where a
user-level threading library could outperform kernel-level threads on a
multi-core system, or vice-versa?

SDB 0S 16 / 21 —

Open Discussion Topics: OS Design & Evolution [l

o Semaphores vs. Condition Variables: Can semaphores be entirely
eliminated in favor of condition variables (always used with a mutex) for
general synchronization? What are the advantages and disadvantages of
such a shift in programming paradigm? Consider simplicity, expressiveness,
and error-proneness.

o OS Design Choices & Energy Efficiency: Beyond simply putting idle
CPUs to sleep, what specific design choices within the OS’s execution
management (e.g., scheduling algorithms, context switching frequency,
thread management) can significantly affect the overall energy consumption
of a device (from a smartphone to a data center server)?

Brainstorm & Share

There are no single "right” answers here, but thoughtful discussion helps
solidify your understanding of trade-offs.

SDB 0s 17 / 21

Looking Ahead: Transition to Other OS Modules |

Execution Management is just one piece of the puzzle. It's the engine, but it
needs fuel (memory) and a place to store its work (file system).

Connecting to Subsequent Modules:
o Faculty B: Memory Management

» You've learned about process address spaces. Next, you'll delve into
how the OS allocates and manages physical memory, virtual memory,

paging, segmentation, and caching strategies. This is crucial for
performance and protection.

o Faculty C: File Systems & 1/0O Systems

» Processes need to store and retrieve data. You'll explore how file
systems organize data on storage devices, manage access, and ensure
integrity. 1/0O systems cover device drivers and efficient data transfer.

o Faculty C (Continued): Advanced Synchronization & Deadlocks
SDB

0S 18 / 21

Looking Ahead: Transition to Other OS Modules Il

» While we covered classical problems, the next module will provide a
deeper dive into deadlock detection, avoidance, and recovery strategies,
as well as more advanced synchronization primitives and concurrency
models.

o Faculty C (Continued): Security & Virtualization

» Execution management forms the basis of process isolation, which is
fundamental to OS security. Virtualization extends this isolation to
entire operating systems.

Stay curious about how execution intertwines with resource management and
coordination layers. These modules build upon each other to form a complete
understanding of operating systems.

SDB 0S 19 / 21

Closing Reflections: The OS as the Foundation |

Your Journey Continues...

o The OS is More Than Just Software: It's a complex set of policies and
mechanisms that enforce rules, protect resources, and arbitrate access to the
underlying hardware. It's the ultimate resource manager.

o Every Line of Code Matters: From a simple " Hello World” to a complex
web server, every instruction you write as a programmer eventually relies on
the fundamental execution logic provided by the operating system.
Understanding this helps you write better, more efficient, and more reliable
code.

o Foundational for Future Roles: A solid grasp of execution management
prepares you for:

» Kernel Development: Contributing to operating systems themselves.

» Embedded Systems: Optimizing code for resource-constrained
environments.

» Distributed Systems: Understanding how individual
processes/threads interact across networks.

SDB 0S 20 / 21 we—

Closing Reflections: The OS as the Foundation Il

» Performance Engineering: Identifying and solving bottlenecks in
complex applications.

» Security Analysis: Recognizing vulnerabilities stemming from
improper process isolation or synchronization.

" The operating system is the program that orchestrates the symphony of
computation, ensuring every process gets its moment on stage, and every
resource plays its part.”

Thank you for your engagement throughout this module!
SDB (e} 21 / 21 s—

Outline

@ Appendix

	Summary
	Appendix
	Appendix

