
Real OS APIs for Process and Thread Control
Week 11

SDB

Autumn 2025

SDB OS 1 / 29



Agenda: Process and Thread Management in Modern OS
Understanding How OS Interfaces Enable Concurrency

1 Linux Process Management: ‘fork()‘, ‘exec()‘, ‘wait()‘ (Classical Unix
process model)

2 Linux Threading: ‘pthread‘ and ‘clone()‘ (User-space vs. kernel-level
threading)

3 Linux Scheduling Policies (Controlling CPU allocation)

4 CPU Affinity and Priority Control in Linux (Fine-tuning performance)

5 Windows Process & Thread APIs (A different approach to concurrency)

6 Windows Scheduling and Priority (How Windows manages execution)

Think Ahead: OS as a Resource Manager

We’ve discussed processes and threads conceptually, and synchronization. Now, how
do we *create* and *control* them programmatically using operating system services?
What tools do OSes provide to manage their execution, priorities, and CPU allocation
to achieve desired performance and responsiveness?

SDB OS 2 / 29



Agenda: Process and Thread Management in Modern OS
Understanding How OS Interfaces Enable Concurrency

1 Linux Process Management: ‘fork()‘, ‘exec()‘, ‘wait()‘ (Classical Unix
process model)

2 Linux Threading: ‘pthread‘ and ‘clone()‘ (User-space vs. kernel-level
threading)

3 Linux Scheduling Policies (Controlling CPU allocation)

4 CPU Affinity and Priority Control in Linux (Fine-tuning performance)

5 Windows Process & Thread APIs (A different approach to concurrency)

6 Windows Scheduling and Priority (How Windows manages execution)

Think Ahead: OS as a Resource Manager

We’ve discussed processes and threads conceptually, and synchronization. Now, how
do we *create* and *control* them programmatically using operating system services?
What tools do OSes provide to manage their execution, priorities, and CPU allocation
to achieve desired performance and responsiveness?

SDB OS 2 / 29



Recap: Processes vs. Threads (API Perspective)
Before diving into specific APIs, let’s briefly recap the key differences from a
practical standpoint:

Feature Process Thread
Isolation High: Independent address space,

file descriptors (copied), signal han-
dlers. Strong fault isolation.

Low: Shares address space, file de-
scriptors, signal handlers with other
threads in the same process.

Creation
Cost

High (copying/setting up new ad-
dress space, PCB)

Lower (only thread control block,
stack, registers)

CommunicationIPC mechanisms (pipes, message
queues, shared memory, sockets)

Shared memory, mutexes, condition
variables, semaphores

Switching
Cost

High (TLB flush, cache invalidation) Lower (context switch within same
address space)

OS
Sup-
port

Managed by OS kernel, scheduled in-
dependently

Managed by OS kernel (kernel-level
threads) or user-level library (user-
level threads)

Termination‘exit()‘ ends process, all threads ter-
minated.

‘pthread exit()‘ (Linux), ‘Exit-
Thread()‘ (Windows) terminates
thread; process continues if other
threads exist.

OS APIs reflect these differences by offering distinct functions for process
management and thread management.

SDB OS 3 / 29



Linux Process Management: ‘fork()‘, ‘exec()‘, ‘wait()‘ I

The Unix/Linux model for process creation is based on the ‘fork-exec‘ paradigm.

1. ‘fork()‘: Create a Child Process (Clone)

1 #include <unistd.h> // For fork , exec , wait

2 #include <stdio.h> // For printf

3 #include <sys/wait.h> // For wait

4
5 int main() {

6 printf("Parent process (PID: %d) starting .\n", getpid ());

7 pid_t pid = fork(); // Creates a child process

8
9 if (pid == -1) {

10 // Error handling for fork failure

11 perror("fork failed");

12 return 1;

13 } else if (pid == 0) {

14 // This code runs in the CHILD process

15 printf("Child process (PID: %d, Parent PID: %d) is running .\n", getpid (), getppid

());

16 // Child will execute a new program

17 // execlp searches PATH for the executable

18 printf("Child is replacing itself with ’ls -l ’...\n");

19 execlp("ls", "ls", "-l", NULL);

20 // execlp only returns if an error occurs

21 perror("exec failed");

22 _exit (127); // Use _exit in child after exec error

23 } else {

24 // This code runs in the PARENT process

25 printf("Parent process (PID: %d) created child with PID: %d.\n", getpid (), pid);

SDB OS 4 / 29



Linux Process Management: ‘fork()‘, ‘exec()‘, ‘wait()‘ II

26 int status;

27 // wait() blocks parent until one child terminates

28 // waitpid () allows waiting for a specific child or non -blocking wait

29 wait(& status); // Wait for any child to terminate

30 printf("Child (PID: %d) terminated with status %d.\n", pid , WEXITSTATUS(status));

31 }

32 printf("Process (PID: %d) exiting .\n", getpid ());

33 return 0;

34 }

Explanation:

‘fork()‘: Creates an almost identical copy of the calling process (the parent).

▶ Parent process: ‘fork()‘ returns the PID of the child.
▶ Child process: ‘fork()‘ returns 0.
▶ Return -1 on error.
▶ Employs Copy-on-Write (CoW): Memory pages are shared until one

process tries to modify them, then a copy is made.

SDB OS 5 / 29



Linux Process Management: ‘fork()‘, ‘exec()‘, ‘wait()‘ III

‘exec()‘ (e.g., ‘execlp‘, ‘execvp‘): Replaces the current process’s memory
image (code, data, heap, stack) with a new program. The PID remains the
same.

▶ Variants (‘execv‘, ‘execl‘, ‘execve‘, etc.) differ in how arguments are
passed and whether environment variables are used.

▶ Crucial for running external commands or applications from within a
program.

‘wait()‘ / ‘waitpid()‘: Parent process waits for a child process to terminate.

▶ Prevents ”zombie” processes (terminated children whose parent hasn’t
collected their exit status).

▶ ‘waitpid()‘ offers more control (wait for specific PID, non-blocking
option ‘WNOHANG‘).

SDB OS 6 / 29



Linux User-Level Threading: ‘pthread‘ API I

The POSIX Threads (pthreads) API provides a standardized interface for creating
and managing threads in C/C++ on Unix-like systems.

1 #include <pthread.h> // For pthreads API

2 #include <stdio.h> // For printf

3 #include <stdlib.h> // For exit

4
5 // Function that the new thread will execute

6 void* thread_work(void* arg) {

7 char* message = (char*)arg;

8 printf("Thread ID: %lu - Message: %s\n", pthread_self (), message);

9 pthread_exit(NULL); // Terminate the thread

10 }

11
12 int main() {

13 pthread_t thread_id; // Thread ID handle

14 char* msg = "Hello from a new thread!";

15 int ret;

16
17 printf("Main thread ID: %lu\n", pthread_self ());

18
19 // Create a new thread

20 // Arg 1: Pointer to pthread_t variable to store new thread ’s ID

21 // Arg 2: Pointer to pthread_attr_t for thread attributes (NULL for default)

22 // Arg 3: Function pointer to the thread ’s entry point

23 // Arg 4: Argument to pass to the thread function (void*)

24 ret = pthread_create (&thread_id , NULL , thread_work , (void*)msg);

25 if (ret != 0) {

26 fprintf(stderr , "Error creating thread: %d\n", ret);

SDB OS 7 / 29



Linux User-Level Threading: ‘pthread‘ API II

27 return 1;

28 }

29
30 // Wait for the created thread to terminate

31 // Arg 1: The pthread_t ID of the thread to wait for

32 // Arg 2: Pointer to store the thread ’s return value (NULL if not needed)

33 ret = pthread_join(thread_id , NULL);

34 if (ret != 0) {

35 fprintf(stderr , "Error joining thread: %d\n", ret);

36 return 1;

37 }

38
39 printf("Thread %lu finished. Main thread exiting .\n", thread_id);

40 return 0;

41 }

Key ‘pthread‘ Functions and Concepts:

‘pthread create()‘: Creates a new thread. The function ‘thread work‘ starts
executing in the new thread.

‘pthread join()‘: Blocks the calling thread (e.g., ‘main‘) until the specified
thread terminates. Used for synchronization and collecting return values.

SDB OS 8 / 29



Linux User-Level Threading: ‘pthread‘ API III

‘pthread detach()‘: Detaches a thread, meaning its resources will be
automatically reclaimed upon termination. A detached thread cannot be
‘join()‘ed.

‘pthread exit()‘: Terminates the calling thread. The thread’s return value
can be passed to ‘pthread join()‘.

‘pthread self()‘: Returns the ID of the calling thread.

‘pthread attr t‘: A structure to specify thread attributes (e.g., stack size,
scheduling policy, detached state) before creation using functions like
‘pthread attr init()‘, ‘pthread attr setdetachstate()‘, etc.

Pthreads manage threads largely in user space but map to kernel-level threads for

scheduling.

SDB OS 9 / 29



Linux Low-Level Threading: ‘clone()‘ System Call I
While ‘pthread create()‘ is the standard way to create threads, it’s typically
implemented on Linux using the more powerful and flexible ‘clone()‘ system call.

What is ‘clone()‘?

A Linux-specific system call that creates a new process (or thread) with a
high degree of control over what resources are shared with the parent.

It’s more primitive than ‘fork()‘ because ‘fork()‘ always clones everything,
whereas ‘clone()‘ allows selective sharing.

‘pthread create()‘ is a library function that wraps ‘clone()‘ with specific flags
to achieve POSIX-compliant thread behavior.

Usage (Simplified Signature):

#define _GNU_SOURCE // Required for CLONE_NEWPID , CLONE_NEWNS , etc.

#include <sched.h> // For clone and clone flags

pid_t clone(int (*fn)(void *), void *child_stack , int flags , void *arg);

// fn: Function pointer for the new process/thread to execute

// child_stack: Pointer to the stack for the new process/thread

// flags: Control what resources are shared or copied

// arg: Argument passed to the fn function

SDB OS 10 / 29



Linux Low-Level Threading: ‘clone()‘ System Call II

Key ‘clone()‘ Flags and Their Implications:

‘CLONE VM‘: (Clone Virtual Memory) Shares the calling process’s memory
space. Essential for threads.

‘CLONE FILES‘: Shares the calling process’s open file descriptors.

‘CLONE SIGHAND‘: Shares the calling process’s signal handler table.

‘CLONE FS‘: Shares the file system information (root, current directory).

‘CLONE PARENT‘: Child gets same parent as caller (e.g., for ‘vfork‘
behavior).

‘CLONE THREAD‘: Puts the child into the same thread group, giving it the
same PID as the parent (but a different TID). Used by pthreads.

‘CLONE NEWPID‘, ‘CLONE NEWNET‘, ‘CLONE NEWNS‘, etc.: Create
new namespaces (PID, network, mount). These are crucial for
implementing container technologies like Docker, where processes need
strong isolation.

SDB OS 11 / 29



Linux Low-Level Threading: ‘clone()‘ System Call III

By carefully combining ‘clone()‘ flags, one can create processes that are isolated

(like ‘fork‘) or highly integrated (like pthreads), or even create lightweight

containers.

SDB OS 12 / 29



Linux Scheduling Policies: Managing CPU Allocation I

Linux provides various scheduling policies to control how processes and threads
compete for CPU time. These policies determine fairness, responsiveness, and
real-time guarantees.

Main Scheduling Classes/Policies:

1 ‘SCHED OTHER‘ (Traditional / CFS):

▶ This is the default time-sharing policy for regular processes.
▶ Implemented by the Completely Fair Scheduler (CFS).
▶ Goal: Provide a fair share of CPU time to all runnable tasks.

Prioritizes interactivity for desktop users.
▶ Uses ‘nice‘ values (or ‘setpriority‘) for user-space priority adjustment.

2 Real-Time Policies (‘SCHED FIFO‘, ‘SCHED RR‘):

▶ Designed for applications requiring strict timing guarantees (e.g.,
industrial control, audio/video processing).

▶ These policies preempt ‘SCHED OTHER‘ tasks. Real-time tasks run
until they block or are preempted by a higher-priority real-time task.

SDB OS 13 / 29



Linux Scheduling Policies: Managing CPU Allocation II

▶ ‘SCHED FIFO‘ (First-In, First-Out): Non-preemptive among tasks
of the same priority. A ‘SCHED FIFO‘ task runs until it explicitly yields
the CPU or blocks.

▶ ‘SCHED RR‘ (Round-Robin): Preemptive among tasks of the same
priority. Each ‘SCHED RR‘ task is given a time slice (quantum); if it’s
still running when its quantum expires, it’s moved to the end of the
ready queue for its priority level.

▶ Real-time priorities range from 1 (lowest) to 99 (highest). (0 is for
‘SCHED OTHER‘ internally).

Setting Scheduling Policy and Priority:

System Call: ‘sched setscheduler(pid, policy, param)‘

Pthreads API: ‘pthread attr setschedpolicy()‘,
‘pthread attr setschedparam()‘ (for thread attributes before creation).

Command Line (Linux):

▶ ‘chrt -f 50 ./my rt app‘ (sets FIFO policy with priority 50)

SDB OS 14 / 29



Linux Scheduling Policies: Managing CPU Allocation III

▶ ‘chrt -r 50 ./my rt app‘ (sets Round-Robin policy with priority 50)

SDB OS 15 / 29



Linux: Set Process Priority (‘nice‘) and CPU Affinity
(‘taskset‘) I

Linux provides tools and APIs to influence where and when a process/thread runs.

1. Process Priority (Nice Level):

Controls the CPU scheduling priority for ‘SCHED OTHER‘ (CFS) tasks.

A higher ‘nice‘ value means a lower priority (more ”nice” to other
processes).

Range: -20 (highest priority) to 19 (lowest priority). Default is 0.

Only root can set negative ‘nice‘ values (increase priority).

Command Line ‘nice‘ (for starting a new process):

nice -n -5 ./ my_cpu_bound_program # Start with higher priority (lower nice value)

nice -n 10 ./ my_background_task # Start with lower priority (higher nice value)

Command Line ‘renice‘ (for a running process):

renice +10 -p 1234 # Change process 1234’s nice value to 10

renice -5 -u myuser # Change all processes owned by ’myuser ’ to nice -5

SDB OS 16 / 29



Linux: Set Process Priority (‘nice‘) and CPU Affinity
(‘taskset‘) II

2. CPU Affinity:

Binds a process or a specific thread to a subset of available CPU cores.

Benefits: Improves cache locality, reduces context switching overhead, can
dedicate cores for specific workloads.

Drawbacks: Can reduce overall system flexibility if used improperly.

Command Line ‘taskset‘:

taskset -c 0,2 ./ my_program # Run ’my_program ’ only on cores 0 and 2

taskset -p 0,1 1234 # Bind running process 1234 to cores 0 and 1

Programmatic Control (C/C++ using ‘sched setaffinity‘):

SDB OS 17 / 29



Linux: Set Process Priority (‘nice‘) and CPU Affinity
(‘taskset‘) III

1 #define _GNU_SOURCE // For CPU_SET macros

2 #include <sched.h> // For sched_setaffinity , CPU_SET , etc.

3 #include <unistd.h> // For getpid

4
5 // ... inside a function ...

6 cpu_set_t set; // CPU set structure

7 CPU_ZERO (&set); // Clear all CPUs from the set

8 CPU_SET(0, &set); // Add CPU 0 to the set

9 CPU_SET(2, &set); // Add CPU 2 to the set

10
11 pid_t current_pid = getpid (); // Or a specific thread ID (TID) for threads

12 // Set affinity for the current process/thread

13 if (sched_setaffinity(current_pid , sizeof(cpu_set_t), &set) == -1) {

14 perror("sched_setaffinity");

15 }

These tools allow administrators and developers to optimize performance for

critical applications or specific server roles.

SDB OS 18 / 29



Windows: Process and Thread APIs I

Windows provides a different set of APIs for managing processes and threads,
often with more parameters and structures for fine-grained control.

1. Process Creation: ‘CreateProcess()‘

Unlike Unix’s ‘fork()‘ then ‘exec()‘, Windows uses a single ‘CreateProcess()‘
function.

It’s a powerful function that directly creates a new process and loads a
specified executable into it.

Returns handles to the new process and its primary thread.

Key parameters allow control over:

▶ Application name and command line
▶ Security attributes
▶ Inheritance of handles
▶ Creation flags (e.g., ‘CREATE NEW CONSOLE‘,

‘DETACHED PROCESS‘)
▶ Environment variables

SDB OS 19 / 29



Windows: Process and Thread APIs II

▶ Current directory
▶ ‘STARTUPINFO‘ structure (window appearance)
▶ ‘PROCESS INFORMATION‘ structure (receives handles and IDs of

new process/thread)

Example: ‘CreateProcess(NULL, ”C:
Windows
notepad.exe”, ..., &si, &pi);‘

2. Thread Creation: ‘CreateThread()‘ and ‘ beginthreadex()‘

‘CreateThread()‘ (Win32 API):

▶ Direct OS API for creating a new thread within the calling process’s
address space.

▶ Takes arguments for security attributes, stack size, start address
(thread function), parameter to thread function, creation flags, and
thread ID.

▶ ‘HANDLE hThread = CreateThread(NULL, 0, ThreadFunc,
(LPVOID)arg, 0, &dwThreadId);‘

SDB OS 20 / 29



Windows: Process and Thread APIs III

‘ beginthreadex()‘ (C Runtime Library - CRT):

▶ Recommended for C/C++ applications as it correctly initializes the
CRT for the new thread.

▶ This ensures proper handling of C++ objects, thread-local storage, and
resource cleanup.

▶ It internally calls ‘CreateThread()‘ but adds necessary CRT
setup/teardown.

▶ ‘uintptr t thread handle = beginthreadex(NULL, 0, &ThreadFunc,
(void*)arg, 0, &thread id);‘

Thread Termination: ‘ExitThread()‘ (clean exit for the thread),
‘TerminateThread()‘ (forceful termination, use with caution).

Waiting for Threads: ‘WaitForSingleObject()‘ or
‘WaitForMultipleObjects()‘ using the thread handle.

SDB OS 21 / 29



Windows Scheduling and Priority Control I
Windows uses a priority-based, preemptive scheduling algorithm with dynamic
priority boosting to achieve responsiveness.

1. Priority Levels:

Windows has 32 priority levels (0-31), where 0 is the lowest and 31 is the
highest.

Levels 16-31 are for real-time threads (privileged access).

Levels 1-15 are for dynamic priority threads.

Level 0 is for the zero page thread (special system thread).

2. Priority Classes and Thread Priorities:

Every process belongs to a priority class (e.g., ‘IDLE PRIORITY CLASS‘,
‘NORMAL PRIORITY CLASS‘, ‘HIGH PRIORITY CLASS‘,
‘REALTIME PRIORITY CLASS‘). This sets the base priority for threads
within that process.

▶ ‘SetPriorityClass(hProcess, priorityClass);‘

SDB OS 22 / 29



Windows Scheduling and Priority Control II

Within a process’s priority class, individual threads can have relative
priorities (e.g., ‘THREAD PRIORITY LOWEST‘,
‘THREAD PRIORITY NORMAL‘, ‘THREAD PRIORITY HIGHEST‘).

▶ ‘SetThreadPriority(hThread, priorityLevel);‘

The effective thread priority is ‘Process Base Priority + Thread Relative
Priority‘.

3. Dynamic Priority Boosting:

Windows dynamically adjusts the priority of threads within the ‘dynamic‘
range (1-15).

Boost on Ready: When a thread wakes up from a wait state (e.g., I/O
completion, semaphore signal), its priority is temporarily boosted to improve
responsiveness.

Boost on Foreground Window: Threads belonging to the currently active
foreground application typically receive a higher priority boost.

SDB OS 23 / 29



Windows Scheduling and Priority Control III

This mechanism tries to keep the system responsive for interactive
applications even under load.

4. CPU Affinity (Processor Affinity Mask):

Similar to Linux, threads can be bound to specific CPU cores or a subset of
cores.

‘SetThreadAffinityMask(hThread, dwProcessorMask);‘

‘SetProcessAffinityMask(hProcess, dwProcessAffinityMask);‘

Windows’s scheduler aims for good overall system responsiveness for typical

desktop and server workloads, often through adaptive priority adjustments.

SDB OS 24 / 29



Key Takeaways I

Linux Process Model (‘fork-exec-wait‘): ‘fork()‘ creates a copy, ‘exec()‘
replaces code, ‘wait()‘ manages child termination. Provides strong isolation
but higher overhead.

Linux Threading (‘pthread‘): User-friendly API built on ‘clone()‘ for
creating and managing threads within a process, offering shared memory and
lower overhead than processes.

Linux ‘clone()‘: A powerful, low-level system call allowing fine-grained
control over resource sharing, used internally by pthreads and for
containerization.

Linux Scheduling: ‘SCHED OTHER‘ (CFS) for general-purpose fair
sharing; ‘SCHED FIFO‘ and ‘SCHED RR‘ for real-time applications with
strict priority levels.

Linux Control: ‘nice‘/‘renice‘ adjust ‘SCHED OTHER‘ priority; ‘taskset‘
and ‘sched setaffinity‘ control CPU affinity.

SDB OS Summary 25 / 29



Key Takeaways II

Windows Process Model (‘CreateProcess()‘): A single, comprehensive
API to create a new process and load an executable, offering extensive
control over its environment.

Windows Threading (‘CreateThread()‘, ‘ beginthreadex()‘):
‘CreateThread()‘ is the native API, ‘ beginthreadex()‘ is recommended for
C/C++ to ensure CRT compatibility.

Windows Scheduling: Priority-based, preemptive system with 32 levels,
incorporating process priority classes, thread relative priorities, and dynamic
priority boosting for responsiveness.

Windows Control: ‘SetPriorityClass()‘, ‘SetThreadPriority()‘, and
‘SetThreadAffinityMask()‘ allow tuning of process/thread execution.

SDB OS Summary 26 / 29



Key Takeaways III

Reflection Prompt: Design Philosophies

Compare and contrast the design philosophies behind Linux’s
‘fork()‘+‘exec()‘ vs. Windows’s ‘CreateProcess()‘. What are the
pros and cons of each approach from a programmer’s perspective? How
do these choices impact the system’s overall flexibility and simplicity?

SDB OS Summary 27 / 29



Next Week Preview: OS Review & System Design
Principles I

Consolidating Knowledge and Looking at the Big Picture

Execution Review: A comprehensive look back at processes, threads, and
scheduling across the course.

Memory Management Review: Virtual memory, paging, segmentation,
caching.

File Systems Review: Structure, access methods, and common operations.

I/O Systems Review: Devices, drivers, and performance.

OS Structures and Lab Consolidation: How components fit together, and
a review of practical lab experiences.

Design Discussion: What are the fundamental principles that make a
modern OS efficient, reliable, and secure?

Final Quiz/Q&A Session.

SDB OS Summary 28 / 29



Next Week Preview: OS Review & System Design
Principles II

Prep Tip for Next Session

Start reviewing all key concepts covered since the beginning of the course.
Think about how different OS components (e.g., CPU scheduling, memory
management, file systems) interact and rely on each other to create a func-
tional system.

SDB OS Summary 29 / 29



Outline

1 Appendix



Exercise: Process and Thread API Application I

Part 1: Linux ‘fork()‘ and ‘exec()‘ Simulation
Consider a scenario where you want your C program to act as a simple shell that
can execute basic commands.
Task:

1 Write a C program that prompts the user for a command (e.g., ”ls -l”,
”date”).

2 Use ‘fork()‘ to create a child process.

3 In the child process, use ‘execlp()‘ to execute the user’s command. Make
sure to handle potential ‘exec()‘ errors.

4 In the parent process, use ‘wait()‘ to wait for the child to complete and print
its exit status.

5 Implement a loop so the ”shell” continues to prompt for commands until the
user types ”exit”.

SDB OS Appendix 1 / 6



Exercise: Process and Thread API Application II

Hint: You’ll need to parse the input string to separate the command and its
arguments for ‘execlp‘ or ‘execvp‘. ‘strtok‘ might be useful, but be careful with its
usage.

Part 2: Thread Priority and Affinity Impact
Imagine you are developing a real-time audio processing application on a
multi-core Linux system.
Task:

1 You have a critical audio processing thread and a less critical UI update
thread. How would you prioritize them using Linux scheduling policies and
‘nice‘ values (or real-time priorities)? Explain your choice.

2 The audio processing thread is very sensitive to cache misses. How could
you use CPU affinity to potentially improve its performance? Describe the
API/tool you would use and the expected effect.

3 If you were developing this on Windows, how would you set the priorities for
these two threads? (Refer to Windows APIs).

SDB OS Appendix 2 / 6



Exercise: Process and Thread API Application III

Reminder

For Part 1, focus on the correct ‘fork‘/‘exec‘/‘wait‘ flow and error handling.
For Part 2, think about the specific characteristics of real-time vs. normal
tasks and how OS features address them.

SDB OS Appendix 3 / 6



Appendix: Advanced Topics to Explore I

Going Deeper into Process & Thread Management

I. Inter-Process Communication (IPC)

Pipes (Anonymous & Named): Detailed use cases for inter-process
communication, especially parent-child or unrelated processes.

Message Queues: How they allow processes to exchange structured
messages asynchronously.

Shared Memory: Fastest IPC mechanism, but requires explicit
synchronization (e.g., using semaphores/mutexes).

Sockets: Network-based IPC, enabling communication across
different machines or processes on the same machine.

SDB OS Appendix 4 / 6



Appendix: Advanced Topics to Explore II

II. Advanced Scheduling & Real-Time Systems

Scheduler Implementation Details (Linux CFS): How red-black
trees and run-queues work to achieve fairness and O(log N)
scheduling complexity.

Real-Time Operating Systems (RTOS): Characteristics, common
RTOS (e.g., FreeRTOS, VxWorks), and their unique scheduling
requirements (e.g., strict deadlines, jitter minimization).

Preemption and Context Switching Overhead: Quantitative
analysis of the cost of context switches and its impact on
performance.

SDB OS Appendix 5 / 6



Appendix: Advanced Topics to Explore III

III. Process & Thread Control Beyond Basics

Daemonization in Linux: Best practices for creating background
processes that detach from the controlling terminal.

Thread Pools: Managing a pool of worker threads to efficiently
handle tasks, reducing creation/destruction overhead.

Fibers/Coroutines: User-mode scheduling primitives for cooperative
multitasking, often used in game engines or high-performance
networking.

Job Objects (Windows): Grouping processes for resource
management (e.g., setting CPU limits, memory limits for a group of
processes).

SDB OS Appendix 6 / 6


	Summary
	Appendix
	Appendix


