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Agenda: Classical Synchronization Problems & Solutions
Applying Synchronization Primitives to Common Concurrency Challenges

1 The Dining Philosophers Problem (Resource contention leading to
deadlock)

2 The Readers–Writers Problem (Managing concurrent reads and exclusive
writes)

3 The Bounded-Buffer Problem (Review) (Producer-Consumer revisited)

4 Mutexes vs. Semaphores (Choosing the right tool)

5 Synchronization Primitives in Real-World APIs (Mapping theory to
practice)

Think Ahead: Beyond Simple Mutual Exclusion

We’ve learned how to protect a single critical section. But what happens
when multiple processes need to acquire multiple shared resources, or when
different types of access (read vs. write) require nuanced synchronization?
How do we prevent complex issues like deadlock and starvation in these
scenarios?
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Classical Problem 1: The Dining Philosophers Problem I

Origin: Proposed by Edsger W. Dijkstra (1965) to illustrate issues of resource
contention and deadlock in parallel computing.

Setup:

N Philosophers are seated around a circular table. (Commonly 5 for
simplicity).

Each philosopher alternates between two states: thinking and eating.

In the center of the table is a bowl of food.

Between each pair of philosophers is a single chopstick (shared resource).

To eat, a philosopher needs to pick up both the chopstick to their left and
the chopstick to their right.
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Classical Problem 1: The Dining Philosophers Problem II

The Challenge:

Design a synchronization scheme that allows the philosophers to eat
concurrently without:

▶ Deadlock: A situation where all philosophers are forever waiting for a
chopstick that another philosopher holds.

▶ Starvation: A situation where a particular philosopher is never able to
eat (continuously out-competed).

▶ While maximizing concurrency (allowing as many as possible to eat
simultaneously).
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Dining Philosophers Problem (Visual Representation)
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Five philosophers (‘P1-P5‘) are
seated around a table.

There are five chopsticks (‘C1-C5‘),
with one placed between each pair
of philosophers.

A philosopher Pi needs both their
left Ci and right C(i+1)%N

chopsticks to eat.

The central issue arises when all five
philosophers simultaneously pick up
their left chopstick. In this state, no
one can pick up their right
chopstick, leading to a deadlock.
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Dining Philosophers: A Simple Semaphore Solution I
Basic (and Flawed) Semaphore Solution:

Use one binary semaphore for each chopstick, initialized to 1 (available).

‘chopstick[i]‘ represents the chopstick to the left of philosopher ‘i‘.

1 semaphore chopstick [5] = {1, 1, 1, 1, 1}; // One semaphore per chopstick , initially

available

2
3 void philosopher(int i) { // i = philosopher ID (0 to 4)

4 while (true) {

5 // Phase 1: Thinking

6 think(); // Philosopher is not hungry

7
8 // Phase 2: Hungry - Attempt to pick up chopsticks

9 // Try to pick up left chopstick

10 wait(chopstick[i]);

11 // Try to pick up right chopstick

12 wait(chopstick [(i + 1) % 5]);

13
14 // Phase 3: Eating (Critical Section)

15 eat(); // Philosopher has both chopsticks and is eating

16
17 // Phase 4: Done Eating - Put down chopsticks

18 // Put down left chopstick

19 signal(chopstick[i]);

20 // Put down right chopstick

21 signal(chopstick [(i + 1) % 5]);

22 }

23 }
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Dining Philosophers: A Simple Semaphore Solution II

Issue with this Solution: Potential for DEADLOCK

If all 5 philosophers simultaneously pick up their left chopstick:

▶ P0 holds C0, waits for C1
▶ P1 holds C1, waits for C2
▶ P2 holds C2, waits for C3
▶ P3 holds C3, waits for C4
▶ P4 holds C4, waits for C0

This forms a circular wait condition, a classic sign of deadlock. No
philosopher can acquire their second chopstick, and thus none can release
their first. All are stuck.

This highlights that simply using semaphores for mutual exclusion isn’t enough;

the acquisition order matters for multiple resources.

SDB OS 7 / 22



Dining Philosophers: Deadlock Prevention Strategies I

To prevent deadlock, we must break one of the four necessary conditions for
deadlock (Mutual Exclusion, Hold and Wait, No Preemption, Circular Wait). For
Dining Philosophers, we typically break ”Hold and Wait” or ”Circular Wait”.

Common Strategies to Prevent Deadlock:

1 Limit the Number of Philosophers:

▶ Allow at most N − 1 philosophers to be hungry (and attempt to pick
up chopsticks) at any time.

▶ This can be implemented using a counting semaphore initialized to
N − 1 (e.g., ‘waiter = N-1‘). Philosophers ‘wait(waiter)‘ before picking
up any chopstick and ‘signal(waiter)‘ after putting both down.

▶ Prevents: Circular Wait (ensures at least one philosopher can always
pick up both).

2 Asymmetric Pickup Order:

▶ Introduce an ordering rule:
⋆ Even-indexed philosophers (P0, P2, P4) pick up their left chopstick

first, then their right.
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Dining Philosophers: Deadlock Prevention Strategies II

⋆ Odd-indexed philosophers (P1, P3) pick up their right chopstick first,
then their left.

▶ This breaks the symmetry and thus the circular wait condition.
▶ Prevents: Circular Wait.

3 Resource Hierarchy (Chopstick Numbering):

▶ Assign a unique number to each chopstick (e.g., C0, C1, C2, C3, C4).
▶ Require all philosophers to pick up the lower-numbered chopstick first,

then the higher-numbered one.
▶ Example: P2 (needs C2, C3) picks C2 then C3. P3 (needs C3, C4)

picks C3 then C4.
▶ Prevents: Circular Wait (as resources are acquired in a strict order).
▶ Drawback: This solution can be less intuitive and might lead to

reduced concurrency in some cases.
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Classical Problem 2: The Readers–Writers Problem I
Setup:

A shared data resource (e.g., a file, a database record).

Multiple Reader processes/threads that only read the data.

Multiple Writer processes/threads that modify the data.

Concurrency Rules:

Multiple Readers Allowed: Any number of readers can access the shared
data concurrently. (Reading doesn’t change data, so it’s safe).

Exclusive Writer: Only one writer can access the shared data at a time.

No Reader During Write: No reader can access the data if a writer is
accessing it.

No Writer During Read: No writer can access the data if any reader is
accessing it.

The Challenge:
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Classical Problem 2: The Readers–Writers Problem II

Design a synchronization mechanism that satisfies these rules while avoiding
starvation (either readers or writers perpetually waiting) and maximizing
concurrency.

Two Main Variants:

1 Reader-Priority: Favors readers; a writer may be forced to wait indefinitely
if a steady stream of readers arrives.

2 Writer-Priority: Favors writers; new readers are blocked if a writer is
waiting, potentially leading to reader starvation.
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Readers–Writers Problem: Reader-Priority Solution I

Shared Variables:

‘semaphore rw = 1;‘: Binary semaphore for controlling access to the shared
data itself. Writers ‘wait(rw)‘ and ‘signal(rw)‘. The first reader ‘wait(rw)‘
and the last reader ‘signal(rw)‘.

‘semaphore mutex = 1;‘: Binary semaphore for protecting ‘readcount‘
(ensuring ‘readcount‘ updates are atomic).

‘int readcount = 0;‘: Keeps track of how many readers are currently
accessing the data.
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Readers–Writers Problem: Reader-Priority Solution II

1 semaphore rw = 1; // Controls access to the shared resource (read/write lock)

2 semaphore mutex = 1; // Protects ‘readcount ‘ variable

3 int readcount = 0; // Number of active readers

4
5 // Reader process/thread

6 void Reader () {

7 while (true) {

8 // Entry Section

9 wait(mutex); // Lock to protect readcount

10 readcount ++; // Increment active readers count

11 if (readcount == 1) { // If this is the first reader , acquire rw lock

12 wait(rw); // Blocks writers , allows other readers

13 }

14 signal(mutex); // Unlock mutex for readcount

15
16 // Reading Section (multiple readers allowed here)

17 read_data (); // Access shared data

18
19 // Exit Section

20 wait(mutex); // Lock to protect readcount

21 readcount --; // Decrement active readers count

22 if (readcount == 0) { // If this is the last reader , release rw lock

23 signal(rw); // Unblocks waiting writers

24 }

25 signal(mutex); // Unlock mutex for readcount

26
27 // Remainder Section

28 // ...

29 }

30 }
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Readers–Writers Problem: Writer Code (Reader-Priority) I

Writer Process/Thread Code:

1 // Writer process/thread

2 void Writer () {

3 while (true) {

4 // Entry Section

5 wait(rw); // Acquire exclusive lock on the shared resource

6 // Blocks if readers are active (readcount > 0)

7 // or another writer is active.

8
9 // Writing Section (only one writer allowed here)

10 write_data (); // Modify shared data

11
12 // Exit Section

13 signal(rw); // Release exclusive lock on the shared resource

14
15 // Remainder Section

16 // ...

17 }

18 }

Problem with Reader-Priority Solution:

Writer Starvation: If readers continuously arrive, ‘readcount‘ may never
drop to 0, meaning ‘rw‘ is never ‘signal()‘ed, and a waiting writer may never
get a chance to write.
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Readers–Writers Problem: Writer Code (Reader-Priority) II

This is a common issue when prioritizing one class of processes over another.

Towards a Writer-Priority Solution:

A writer-priority solution would typically involve additional semaphores and a
‘writecount‘ or ‘read block‘ semaphore.

When a writer wants to enter, it would block new readers from starting,
allowing waiting writers to proceed before any new readers.

This often involves more complex logic to manage queues for both readers
and writers and ensure fairness or strict priority.

This illustrates the trade-off in synchronization: prioritizing one group can lead to

starvation for another.
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Bounded-Buffer Problem (Producer-Consumer Review) I
Recall from Last Week:

A producer creates items and puts them into a shared, fixed-size buffer.

A consumer takes items from the buffer and consumes them.

This is a fundamental pattern in concurrent systems (e.g., message queues,
print spoolers).

Synchronization Needs:

1 Mutual Exclusion: Only one process (producer or consumer) can access
the buffer at a time to modify its contents or pointers.

2 Synchronization (Coordination):

▶ Producer must wait if the buffer is full.
▶ Consumer must wait if the buffer is empty.

Semaphore-Based Solution (Recap):

‘semaphore mutex = 1;‘ (for mutual exclusion on buffer access)
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Bounded-Buffer Problem (Producer-Consumer Review) II

‘semaphore empty = N;‘ (counting semaphore, initially ‘N‘, counts empty
slots)

‘semaphore full = 0;‘ (counting semaphore, initially ‘0‘, counts full slots)

Producer Logic Consumer Logic

wait(empty);

wait(mutex);

add_item_to_buffer

();

signal(mutex);

signal(full);

wait(full);

wait(mutex);

remove_item_from_buffer

();

signal(mutex);

signal(empty);

This problem is crucial as its solution pattern forms the basis for many real-world

message queueing systems.
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Mutexes vs. Semaphores: Choosing the Right Tool I

While a binary semaphore can be used for mutual exclusion, dedicated mutex
objects offer additional semantic clarity and features in most modern
programming environments.

Feature Binary Semaphore Mutex (Mutual Exclusion Lock)
Type Integer counter (0 or 1) Binary state (locked/unlocked)
Purpose General-purpose signaling Strictly for mutual exclusion
Initial Value 0 or 1 Unlocked (ready to be acquired)
Ownership No concept of ownership. Any process

can ‘signal()‘.
Owned by the thread that acquired
it. Only the owner can release it.

Operations ‘wait()‘ (P), ‘signal()‘ (V) ‘lock()‘, ‘unlock()‘
Use Case Resource counting, signaling events,

Producer-Consumer (full/empty)
Protecting critical sections, ensuring
atomicity of operations

Complexity Lower-level primitive Higher-level primitive built on top of
binary semaphores or atomic ops

Recursion No inherent support Often supports recursion (a thread
can acquire its own mutex multiple
times)

Priority Inversion Safety No inherent protection Many implementations have priority
inheritance/ceiling protocols
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Mutexes vs. Semaphores: Choosing the Right Tool II

When to Use Which:

Use a Mutex when you need to protect a critical section where only one
thread can execute at a time (e.g., shared variable updates). It’s simpler and
safer due to ownership.

Use a Counting Semaphore when you need to control access to a pool of
resources (e.g., ‘N‘ printers) or for general signaling (e.g., producer signaling
consumer that data is ready).

A Binary Semaphore can be used as a mutex, but usually, a dedicated
Mutex object is preferred for its features and clearer semantics.
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Key Takeaways I

Classical Synchronization Problems (Dining Philosophers,
Readers-Writers, Bounded Buffer) serve as benchmarks for understanding
and solving complex concurrency challenges like deadlock and starvation.

Dining Philosophers highlights how resource acquisition order and circular
dependencies can lead to deadlock. Solutions involve breaking one of the
deadlock conditions.

Readers-Writers demonstrates the need for nuanced access control
(multiple readers vs. single writer) and the trade-offs in prioritizing one
group, which can lead to starvation for another.

Bounded Buffer is a foundational pattern for inter-process/thread
communication, requiring both mutual exclusion and coordination.

Mutexes are specifically for mutual exclusion (ownership, RAII-friendly),
while Semaphores are more general for counting resources or signaling.
Choose based on specific needs.
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Key Takeaways II

Real-world operating systems and libraries (e.g., POSIX, C++ Standard
Library) provide high-level, robust synchronization primitives (mutexes,
semaphores, condition variables, RW locks) that abstract away low-level
complexities.

Reflection Prompt: Beyond Theory

Consider an online multiplayer game. How might the ”Readers-Writers”
problem manifest when players update their character’s stats (write) or
view other players’ stats (read)? What are the practical implications of
reader-priority vs. writer-priority in such a system?
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Next Week Preview: Deadlocks: Detection, Avoidance,
Prevention, Recovery
A Deeper Dive into Deadlocks

Deadlock Characterization: The four necessary conditions revisited.

Deadlock Prevention: Strategies to ensure at least one condition never
holds.

Deadlock Avoidance: Algorithms (e.g., Banker’s Algorithm) to
dynamically decide if granting a resource request is safe.

Deadlock Detection and Recovery: Identifying deadlocks once they occur
and strategies to break them.

Livelock and Starvation (briefly differentiate from deadlock).

Prep Tip for Next Session

Review the four necessary conditions for deadlock from a previous session.
Understanding these deeply will be crucial for next week’s topic, as all
prevention and avoidance strategies target one or more of these conditions.
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Synchronization Primitives in Real-World OS/Library APIs
I

POSIX Threads (pthreads) - C/C++

Mutexes: ‘pthread mutex t‘, ‘pthread mutex init()‘,
‘pthread mutex lock()‘, ‘pthread mutex unlock()‘. The most
common way to achieve mutual exclusion.

Semaphores: ‘sem t‘, ‘sem init()‘, ‘sem wait()‘, ‘sem post()‘. Can
be named (process-shared) or unnamed (thread-shared).

Condition Variables: ‘pthread cond t‘, ‘pthread cond init()‘,
‘pthread cond wait()‘, ‘pthread cond signal()‘,
‘pthread cond broadcast()‘. Used with mutexes to wait for specific
conditions to become true (e.g., buffer not empty/full).

Read-Write Locks: ‘pthread rwlock t‘, ‘pthread rwlock rdlock()‘,
‘pthread rwlock wrlock()‘, ‘pthread rwlock unlock()‘. Built-in
support for Readers-Writers problem.
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Synchronization Primitives in Real-World OS/Library APIs
II

C++ Standard Library (C++11 onwards)

Mutexes: ‘std::mutex‘, ‘std::recursive mutex‘, ‘std::timed mutex‘.
Provide ‘lock()‘ and ‘unlock()‘ methods.

Lock Guards/Unique Locks: ‘std::lock guard‘, ‘std::unique lock‘.
RAII (Resource Acquisition Is Initialization) wrappers around
mutexes to ensure ‘unlock()‘ is called automatically, preventing
common errors.

Condition Variables: ‘std::condition variable‘. Used with
‘std::unique lock‘ to wait for conditions.

Semaphores (C++20): ‘std::counting semaphore‘,
‘std::binary semaphore‘. Native support added recently.
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Synchronization Primitives in Real-World OS/Library APIs
III

Linux Kernel Synchronization Primitives

Spinlocks: ‘spinlock t‘. Used for very short critical sections,
busy-waits.

Mutexes: ‘struct mutex‘. Blocking, suitable for longer critical
sections.

Semaphores: ‘struct semaphore‘. Can be used as counting or binary.

Completions: For threads to wait for specific events.

Read-Write Semaphores/Spinlocks: For Readers-Writers pattern.
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Quick Questions: Classical Problems & Synchronization
Tools
Test Your Understanding:

1 Dining Philosophers: Describe the deadlock scenario in the simple
semaphore solution for the Dining Philosophers Problem. Which specific
deadlock condition is violated?

2 Readers-Writers: Explain why the Reader-Priority solution to the
Readers-Writers Problem can lead to writer starvation. How would a
writer-priority solution typically differ to address this?

3 Mutex vs. Semaphore: You need to protect a shared linked list from
concurrent modifications. Which synchronization primitive would you
primarily choose: a mutex or a counting semaphore? Justify your choice.

4 Bounded Buffer (Producer-Consumer): If a producer attempts to add an
item to a full buffer, and a consumer attempts to remove an item from an
empty buffer, what role do the ‘empty‘ and ‘full‘ semaphores play in
ensuring correct behavior without busy-waiting?

Think & Discuss

Formulate your answers before reviewing the solutions or discussing with
peers.
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Exercise: Applying Readers-Writers & Mutex/Semaphore
Choice I
Part 1: The Ticketing System Problem
Imagine a shared online ticketing system for a concert with 100 available tickets.
Multiple users (threads/processes) can:

View available tickets (read operation). Many users can do this
concurrently.

Purchase a ticket (write operation). This reduces the available tickets and
must be exclusive.

Task:

1 Describe how this problem maps to the Readers-Writers problem. Identify
the ”readers” and ”writers”.

2 Outline a synchronization solution for this ticketing system using semaphores
(or mutexes where appropriate) that prioritizes buyers (writers) to ensure
that waiting buyers get tickets before new viewers can read. Describe the
variables you’d use and the high-level logic for ‘view tickets()‘ and
‘buy ticket()‘.
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Exercise: Applying Readers-Writers & Mutex/Semaphore
Choice II

3 What potential starvation issue could arise from your writer-priority solution
for this problem?

Part 2: Choosing the Right Primitive
For each scenario below, decide whether a mutex or a counting semaphore
would be the most appropriate primary synchronization primitive, and briefly
explain why.

1 Protecting a linked list that stores active network connections, allowing only
one thread to add or remove connections at a time.

2 Controlling access to a shared pool of 8 database connections, ensuring no
more than 8 threads can use a connection simultaneously.

3 Signaling between two threads: Thread A produces a data packet, and
Thread B needs to process it. Thread B should wait until a packet is
available.
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Exercise: Applying Readers-Writers & Mutex/Semaphore
Choice III

Reminder

Think about the fundamental purpose and properties of each synchroniza-
tion primitive. Consider not just correctness, but also practicality and com-
mon usage patterns.
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Appendix: Advanced Topics to Explore I

Deepening Your Understanding of Advanced Synchronization

I. Beyond Semaphores & Mutexes

Monitors: High-level programming language constructs (e.g., in
Java, C#) that encapsulate shared data and the synchronization
primitives (mutexes and condition variables) needed to protect them.

Condition Variables (Detailed): How ‘wait()‘, ‘signal()‘, and
‘broadcast()‘ work in conjunction with mutexes to enable threads to
wait for complex conditions beyond simple resource availability.

Rethinking Classical Problems with Monitors/Condition
Variables: How the Dining Philosophers or Readers-Writers problem
would be solved using these higher-level constructs, often resulting in
cleaner code.

SDB OS Appendix 8 / 10



Appendix: Advanced Topics to Explore II

II. Fairness and Liveness Issues

Priority Inversion & Priority Inheritance Protocol: When a
high-priority task gets blocked by a low-priority task holding a
resource it needs, and how OSes prevent this.

Adaptive Mutexes: Mutexes that start as spinlocks and transition
to blocking when contention is high.

Readers-Writers Variants (Full Discussion): More complex
solutions that guarantee no starvation for either readers or writers
(e.g., using turnstiles or separate queues).
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Appendix: Advanced Topics to Explore III

III. Hardware-Software Interface

Memory Models (Revisited): The specifics of how different
processor architectures (e.g., x86, ARM) ensure memory visibility
and order, impacting concurrent programming correctness.

Cache Coherency Protocols: How multiple CPU cores maintain a
consistent view of shared memory in their private caches.

Atomic Operations in Detail: Deep dive into how
‘compare exchange strong‘, ‘fetch add‘, etc., are implemented at the
hardware level and their role in lock-free programming.
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