
Introduction to Operating Systems and Execution
Management

Week 1

SDB

Autumn 2025



Agenda

1 What is an Operating System?

2 Types and Evolution of OS

3 Execution Management in OS

4 Kernel vs User Mode

5 Real-World Relevance and Case

6 Questions & Summary

SDB OS 1 / 14



What is an Operating System? I

Definition

An Operating System (OS) is a
foundational software layer that manages
computer hardware and software resources,
and provides a consistent interface for users
and applications to interact with the system.

User Programs

System Services

OS Kernel

Hardware

Core Responsibilities of an OS:

Managing Programs: Starts, stops, and coordinates applications
(processes and threads).

Handling Memory: Allocates and tracks memory usage for efficient
and safe execution.

Controlling Devices: Manages input/output devices like keyboards,
disks, and printers.

SDB OS 2 / 14



What is an Operating System? II

Organizing Files: Provides file systems to store, retrieve, and secure
data.

Ensuring Security: Protects system resources and user data from
unauthorized access.

Scheduling Tasks: Decides which tasks run and when, optimizing
performance.

Did You Know?

The first widely used OS was GM-NAA I/O, developed in the 1950s
for IBM mainframes. Today, OSes power everything from supercom-
puters to smartwatches.

SDB OS 3 / 14



Types of Operating Systems
Batch OS – Executes batches of jobs with minimal user interaction. (e.g.,
IBM 7094)

Time-Sharing OS – Allows multiple users to share system resources
simultaneously. (e.g., UNIX)

Real-Time OS (RTOS) – Guarantees response within strict time
constraints. (e.g., VxWorks, FreeRTOS)

Distributed OS – Coordinates multiple machines to appear as a single
system. (e.g., Amoeba, Plan 9)

Network OS – Provides services to computers connected over a network.
(e.g., Novell NetWare)

Mobile/Embedded OS – Optimized for low-power, resource-constrained
devices. (e.g., Android, iOS, Zephyr)

Did You Know?

UNIX, developed in the 1970s at Bell Labs, laid the foundation for
many modern OSes including Linux and macOS.

SDB OS 4 / 14



Execution Management Responsibilities

Key functions of an OS during program
execution:

Process Lifecycle: Creating,
scheduling, and terminating processes.

CPU Scheduling: Allocating CPU
time fairly and efficiently.

Context Switching: Saving and
restoring process states.

Thread Management: Coordinating
concurrent execution within processes.

Hardware
(CPU, Memory)

OS Kernel
(Execution Manager)

Scheduler
+ Context Switcher

User Processes
(e.g., Browser, Editor)

Example

When you open a browser, the OS creates a process, assigns it CPU
time, and switches between it and other tasks like music playback.

SDB OS 5 / 14



Execution Management Responsibilities

Key functions of an OS during program
execution:

Process Lifecycle: Creating,
scheduling, and terminating processes.

CPU Scheduling: Allocating CPU
time fairly and efficiently.

Context Switching: Saving and
restoring process states.

Thread Management: Coordinating
concurrent execution within processes.

Hardware
(CPU, Memory)

OS Kernel
(Execution Manager)

Scheduler
+ Context Switcher

User Processes
(e.g., Browser, Editor)

Example

When you open a browser, the OS creates a process, assigns it CPU
time, and switches between it and other tasks like music playback.

SDB OS 5 / 14



Modes of CPU Operation
User Mode: Limited access — used for running application code.
Cannot directly access hardware or critical memory.

Kernel Mode: Full access — used by the OS to execute privileged
instructions and manage system resources.

Why do we need separate modes?

To protect the system from accidental or
malicious interference by user programs.
▶ Without this separation, a faulty or
malicious app could:

Overwrite critical OS memory

Access or corrupt other users’ data

Disable hardware or crash the
system

Questions to Ponder

▶ What could happen if a
video game could directly
access your disk or mem-
ory?
▶ Why is it dangerous
to allow user programs to
execute privileged instruc-
tions?
▶ How does the OS enforce
this separation in modern
CPUs?

SDB OS 6 / 14



Modes of CPU Operation
User Mode: Limited access — used for running application code.
Cannot directly access hardware or critical memory.

Kernel Mode: Full access — used by the OS to execute privileged
instructions and manage system resources.

Why do we need separate modes?

To protect the system from accidental or
malicious interference by user programs.
▶ Without this separation, a faulty or
malicious app could:

Overwrite critical OS memory

Access or corrupt other users’ data

Disable hardware or crash the
system

Questions to Ponder

▶ What could happen if a
video game could directly
access your disk or mem-
ory?
▶ Why is it dangerous
to allow user programs to
execute privileged instruc-
tions?
▶ How does the OS enforce
this separation in modern
CPUs?

SDB OS 6 / 14



Modes of CPU Operation
User Mode: Limited access — used for running application code.
Cannot directly access hardware or critical memory.

Kernel Mode: Full access — used by the OS to execute privileged
instructions and manage system resources.

Why do we need separate modes?

To protect the system from accidental or
malicious interference by user programs.
▶ Without this separation, a faulty or
malicious app could:

Overwrite critical OS memory

Access or corrupt other users’ data

Disable hardware or crash the
system

Questions to Ponder

▶ What could happen if a
video game could directly
access your disk or mem-
ory?
▶ Why is it dangerous
to allow user programs to
execute privileged instruc-
tions?
▶ How does the OS enforce
this separation in modern
CPUs?

SDB OS 6 / 14



System Call and Mode Switch
A system call is a controlled request from a user program to the OS for
services like file access or memory allocation. It triggers a switch from
user mode to kernel mode to safely execute privileged operations.

User Application
(User Mode)

System Call Interface

OS Kernel Code
(Kernel Mode)

Hardware Access

API call

Trap to Kernel Mode

Privileged Operation

Return to
User Mode

Analogy

A system call is like ringing a ser-
vice bell at a hotel desk. You (the
guest) can’t go behind the desk
(kernel), but you can request help
through a formal channel.

Questions to Ponder

▶ Why is direct hardware access by user programs unsafe?
▶ What ensures only valid system calls are executed?
▶ How does the OS return control safely to user mode?

SDB OS 7 / 14



Case Study: Running a Program I

What happens when you run gcc file.c in a Linux shell?

Step-by-step Breakdown:

1 User Input: The user types gcc file.c in the shell. The shell
parses the command and prepares to execute it.

2 Process Creation – fork(): The shell uses the fork() system call
to create a new child process. This child is an exact copy of the shell
process, including its memory space.

3 Program Replacement – exec(): In the child process, the shell
calls exec() to replace its memory image with that of the gcc
compiler. This loads the binary code of gcc into memory and begins
execution from its entry point.

SDB OS 8 / 14



Case Study: Running a Program II

4 Scheduling and Execution: The OS scheduler places the new
process in the ready queue. When the CPU is available, the process is
scheduled for execution. The OS performs a context switch to load
the process state into the CPU.

5 System Calls and Mode Switching: During execution, gcc makes
system calls (e.g., to read the source file, write output, allocate
memory). Each system call triggers a switch from user mode to
kernel mode, allowing the OS to safely perform privileged operations.

6 Completion and Exit: Once compilation is complete, the process
calls exit(), and the OS reclaims its resources. The parent shell
process is notified via wait().

SDB OS 9 / 14



Case Study: Running a Program III
Shell

(User types

gcc file.c)

fork()
(Create child process)

exec()
(Load gcc binary)

OS Scheduler
(Assign CPU)

System Calls
(e.g., open, read)

Hardware Access
(Disk, CPU, Memory)

U
se
r
S
p
a
ce

K
er
n
el

S
p
a
ce

Analogy

Think of this like a relay race: the shell
hands off control to a new runner (the
compiler), who then takes over the track
(CPU) and uses tools (system calls) to
complete the job.

Try This!

Run strace gcc file.c in a terminal to
see the actual system calls made during
execution.

SDB OS 10 / 14



Think-Pair-Share: Direct Hardware Access

Prompt: What could go wrong if a user-level process could directly access
disk hardware?

Hint: Consider implications for:

System Stability – Could crash or corrupt the OS.

Security – Could read or overwrite sensitive data.

Performance – Could bypass scheduling and cause resource
starvation.

Discussion Extension

How do modern OSes prevent this? What role do device drivers and
permission models play?

SDB OS 11 / 14



Think-Pair-Share: Direct Hardware Access

Prompt: What could go wrong if a user-level process could directly access
disk hardware?

Hint: Consider implications for:

System Stability – Could crash or corrupt the OS.

Security – Could read or overwrite sensitive data.

Performance – Could bypass scheduling and cause resource
starvation.

Discussion Extension

How do modern OSes prevent this? What role do device drivers and
permission models play?

SDB OS 11 / 14



Think-Pair-Share: Direct Hardware Access

Prompt: What could go wrong if a user-level process could directly access
disk hardware?

Hint: Consider implications for:

System Stability – Could crash or corrupt the OS.

Security – Could read or overwrite sensitive data.

Performance – Could bypass scheduling and cause resource
starvation.

Discussion Extension

How do modern OSes prevent this? What role do device drivers and
permission models play?

SDB OS 11 / 14



Why Execution Control Matters

Execution control is not just academic — it powers real-world
systems:

Multicore CPUs: OSes manage thousands of threads across cores
for responsiveness.

Real-Time Systems: In robotics and automotive, timing is critical
(e.g., ABS braking).

Cloud Computing: OS-level scheduling underpins Kubernetes and
container orchestration.

Embedded Devices: OSes like FreeRTOS must be ultra-efficient and
deterministic.

Did You Know?

NASA’s Mars rovers run on real-time operating systems to ensure
precise control and fault tolerance.

SDB OS 12 / 14



Why Execution Control Matters

Execution control is not just academic — it powers real-world
systems:

Multicore CPUs: OSes manage thousands of threads across cores
for responsiveness.

Real-Time Systems: In robotics and automotive, timing is critical
(e.g., ABS braking).

Cloud Computing: OS-level scheduling underpins Kubernetes and
container orchestration.

Embedded Devices: OSes like FreeRTOS must be ultra-efficient and
deterministic.

Did You Know?

NASA’s Mars rovers run on real-time operating systems to ensure
precise control and fault tolerance.

SDB OS 12 / 14



Wrap-up and Summary

Key Takeaways:

The OS manages execution through processes, threads, and CPU
scheduling.

Kernel mode enables privileged operations; user mode ensures safety
and isolation.

System calls are the bridge between user programs and kernel services.

Execution control is foundational to performance, security, and
reliability.

Reflect

Can you think of a real-world failure caused by poor execution control
or lack of isolation?

SDB OS Summary 13 / 14



Wrap-up and Summary

Key Takeaways:

The OS manages execution through processes, threads, and CPU
scheduling.

Kernel mode enables privileged operations; user mode ensures safety
and isolation.

System calls are the bridge between user programs and kernel services.

Execution control is foundational to performance, security, and
reliability.

Reflect

Can you think of a real-world failure caused by poor execution control
or lack of isolation?

SDB OS Summary 13 / 14



Next Week Preview: System Calls and OS Structures

Coming Up:

Deep dive into fork(), exec(), wait(), and exit().

Explore OS architectures: Monolithic, Layered, Microkernel.

Hands-on: Build and visualize a process tree in Linux.

Prep Activity

Try running ps -ef --forest on a Linux system to preview how
processes are structured.

SDB OS Summary 14 / 14



Next Week Preview: System Calls and OS Structures

Coming Up:

Deep dive into fork(), exec(), wait(), and exit().

Explore OS architectures: Monolithic, Layered, Microkernel.

Hands-on: Build and visualize a process tree in Linux.

Prep Activity

Try running ps -ef --forest on a Linux system to preview how
processes are structured.

SDB OS Summary 14 / 14



Outline

1 Appendix



Quiz: Test Your Understanding
Choose the correct answer or discuss briefly:

1 Which of the following operations requires a switch to kernel
mode?
A. Adding two numbers in a program
B. Reading a file from disk
C. Printing to the screen
D. Declaring a variable

2 What is the main purpose of a system call?
A. To compile code
B. To switch between applications
C. To request OS services from user space
D. To allocate memory in hardware

3 Short Answer: Why is it dangerous to allow user programs direct
access to hardware?

4 True or False: A context switch only involves changing the program
counter.

5 Challenge: Describe a real-world scenario where poor execution
control could lead to system failure.

SDB OS Appendix 1 / 3



Quiz: Test Your Understanding
Choose the correct answer or discuss briefly:

1 Which of the following operations requires a switch to kernel
mode?
A. Adding two numbers in a program
B. Reading a file from disk
C. Printing to the screen
D. Declaring a variable

2 What is the main purpose of a system call?
A. To compile code
B. To switch between applications
C. To request OS services from user space
D. To allocate memory in hardware

3 Short Answer: Why is it dangerous to allow user programs direct
access to hardware?

4 True or False: A context switch only involves changing the program
counter.

5 Challenge: Describe a real-world scenario where poor execution
control could lead to system failure.

SDB OS Appendix 1 / 3



Quiz: Test Your Understanding
Choose the correct answer or discuss briefly:

1 Which of the following operations requires a switch to kernel
mode?
A. Adding two numbers in a program
B. Reading a file from disk
C. Printing to the screen
D. Declaring a variable

2 What is the main purpose of a system call?
A. To compile code
B. To switch between applications
C. To request OS services from user space
D. To allocate memory in hardware

3 Short Answer: Why is it dangerous to allow user programs direct
access to hardware?

4 True or False: A context switch only involves changing the program
counter.

5 Challenge: Describe a real-world scenario where poor execution
control could lead to system failure.

SDB OS Appendix 1 / 3



Quiz: Test Your Understanding
Choose the correct answer or discuss briefly:

1 Which of the following operations requires a switch to kernel
mode?
A. Adding two numbers in a program
B. Reading a file from disk
C. Printing to the screen
D. Declaring a variable

2 What is the main purpose of a system call?
A. To compile code
B. To switch between applications
C. To request OS services from user space
D. To allocate memory in hardware

3 Short Answer: Why is it dangerous to allow user programs direct
access to hardware?

4 True or False: A context switch only involves changing the program
counter.

5 Challenge: Describe a real-world scenario where poor execution
control could lead to system failure.

SDB OS Appendix 1 / 3



Quiz: Test Your Understanding
Choose the correct answer or discuss briefly:

1 Which of the following operations requires a switch to kernel
mode?
A. Adding two numbers in a program
B. Reading a file from disk
C. Printing to the screen
D. Declaring a variable

2 What is the main purpose of a system call?
A. To compile code
B. To switch between applications
C. To request OS services from user space
D. To allocate memory in hardware

3 Short Answer: Why is it dangerous to allow user programs direct
access to hardware?

4 True or False: A context switch only involves changing the program
counter.

5 Challenge: Describe a real-world scenario where poor execution
control could lead to system failure.
SDB OS Appendix 1 / 3



Quiz: Apply What You’ve Learned

Challenge your understanding with these deeper questions:

1 Scenario: A real-time system controlling a robotic arm misses a
deadline due to a delayed context switch. What OS-level mechanisms
could prevent this?

2 Multiple Choice: Which of the following best describes the role of
the scheduler?

A. It compiles user programs.
B. It decides which process gets CPU time next.
C. It manages file permissions.
D. It handles hardware interrupts directly.

3 Short Answer: How does the OS ensure that a system call made by
a user process is safe and valid?

4 True or False: All system calls must result in a context switch.

5 Discussion: Compare execution control in a general-purpose OS (like
Linux) vs. a real-time OS (like FreeRTOS).

SDB OS Appendix 2 / 3



Quiz: Apply What You’ve Learned

Challenge your understanding with these deeper questions:

1 Scenario: A real-time system controlling a robotic arm misses a
deadline due to a delayed context switch. What OS-level mechanisms
could prevent this?

2 Multiple Choice: Which of the following best describes the role of
the scheduler?

A. It compiles user programs.
B. It decides which process gets CPU time next.
C. It manages file permissions.
D. It handles hardware interrupts directly.

3 Short Answer: How does the OS ensure that a system call made by
a user process is safe and valid?

4 True or False: All system calls must result in a context switch.

5 Discussion: Compare execution control in a general-purpose OS (like
Linux) vs. a real-time OS (like FreeRTOS).

SDB OS Appendix 2 / 3



Quiz: Apply What You’ve Learned

Challenge your understanding with these deeper questions:

1 Scenario: A real-time system controlling a robotic arm misses a
deadline due to a delayed context switch. What OS-level mechanisms
could prevent this?

2 Multiple Choice: Which of the following best describes the role of
the scheduler?

A. It compiles user programs.
B. It decides which process gets CPU time next.
C. It manages file permissions.
D. It handles hardware interrupts directly.

3 Short Answer: How does the OS ensure that a system call made by
a user process is safe and valid?

4 True or False: All system calls must result in a context switch.

5 Discussion: Compare execution control in a general-purpose OS (like
Linux) vs. a real-time OS (like FreeRTOS).

SDB OS Appendix 2 / 3



Quiz: Apply What You’ve Learned

Challenge your understanding with these deeper questions:

1 Scenario: A real-time system controlling a robotic arm misses a
deadline due to a delayed context switch. What OS-level mechanisms
could prevent this?

2 Multiple Choice: Which of the following best describes the role of
the scheduler?

A. It compiles user programs.
B. It decides which process gets CPU time next.
C. It manages file permissions.
D. It handles hardware interrupts directly.

3 Short Answer: How does the OS ensure that a system call made by
a user process is safe and valid?

4 True or False: All system calls must result in a context switch.

5 Discussion: Compare execution control in a general-purpose OS (like
Linux) vs. a real-time OS (like FreeRTOS).

SDB OS Appendix 2 / 3



Quiz: Apply What You’ve Learned

Challenge your understanding with these deeper questions:

1 Scenario: A real-time system controlling a robotic arm misses a
deadline due to a delayed context switch. What OS-level mechanisms
could prevent this?

2 Multiple Choice: Which of the following best describes the role of
the scheduler?

A. It compiles user programs.
B. It decides which process gets CPU time next.
C. It manages file permissions.
D. It handles hardware interrupts directly.

3 Short Answer: How does the OS ensure that a system call made by
a user process is safe and valid?

4 True or False: All system calls must result in a context switch.

5 Discussion: Compare execution control in a general-purpose OS (like
Linux) vs. a real-time OS (like FreeRTOS).

SDB OS Appendix 2 / 3



Exercise: Simulating a Context Switch
Objective: Understand what happens during a context switch and what
data the OS must manage.

Task

Write pseudocode or a flowchart to simulate a context switch between two
processes. Identify what information must be saved and restored by the
OS.

Hints:
Think about registers, program counter, stack pointer, and memory state.
Consider how the scheduler decides which process to run next.
What role does the process control block (PCB) play?

Challenge

Can you identify a real-world scenario where context switching is critical
(e.g., gaming, real-time control)?

SDB OS Appendix 3 / 3



Exercise: Simulating a Context Switch
Objective: Understand what happens during a context switch and what
data the OS must manage.

Task

Write pseudocode or a flowchart to simulate a context switch between two
processes. Identify what information must be saved and restored by the
OS.

Hints:
Think about registers, program counter, stack pointer, and memory state.
Consider how the scheduler decides which process to run next.
What role does the process control block (PCB) play?

Challenge

Can you identify a real-world scenario where context switching is critical
(e.g., gaming, real-time control)?

SDB OS Appendix 3 / 3



Exercise: Simulating a Context Switch
Objective: Understand what happens during a context switch and what
data the OS must manage.

Task

Write pseudocode or a flowchart to simulate a context switch between two
processes. Identify what information must be saved and restored by the
OS.

Hints:
Think about registers, program counter, stack pointer, and memory state.
Consider how the scheduler decides which process to run next.
What role does the process control block (PCB) play?

Challenge

Can you identify a real-world scenario where context switching is critical
(e.g., gaming, real-time control)?

SDB OS Appendix 3 / 3


	Summary
	Appendix
	Appendix


