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Race Conditions and Critical Sections
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Software & Hardware Approaches
Busy Waiting and Spinlocks
Real-World Examples
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Why Synchronization?

The Problem of Shared Resources

o Concurrent processes and threads often share resources:
memory, files, and devices.

o Uncoordinated access to these shared resources can lead to
data inconsistency and corruption.

o Synchronization mechanisms ensure a consistent, predictable,
and correct outcome.
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Why Synchronization?

The Problem of Shared Resources

o Concurrent processes and threads often share resources:
memory, files, and devices.

o Uncoordinated access to these shared resources can lead to
data inconsistency and corruption.

o Synchronization mechanisms ensure a consistent, predictable,
and correct outcome.

Analogy: Imagine two people updating a shared bank account balance at
the same time. If one reads the balance, then the other reads it before the
first one has written the new balance, the final result will be wrong.
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Why Synchronization?

The Problem of Shared Resources

o Concurrent processes and threads often share resources:
memory, files, and devices.

o Uncoordinated access to these shared resources can lead to
data inconsistency and corruption.

o Synchronization mechanisms ensure a consistent, predictable,
and correct outcome.

Analogy: Imagine two people updating a shared bank account balance at
the same time. If one reads the balance, then the other reads it before the
first one has written the new balance, the final result will be wrong.

Goal: The objective of synchronization is to maintain correctness without
sacrificing the benefits of concurrency.
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What is a Race Condition?

Definition

A race condition occurs when multiple threads or processes access

shared data concurrently, and the final outcome depends on the spe-
cific, unpredictable order of their execution.
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What is a Race Condition?

Definition

A race condition occurs when multiple threads or processes access

shared data concurrently, and the final outcome depends on the spe-
cific, unpredictable order of their execution.

Example: Two threads incrementing a shared counter.

int counter

0; // Shared resource

// Thread A

int temp = counter; // Reads 0
temp = temp + 1; // Becomes 1
counter = temp; // Writes 1

// Thread B (interleaves)
// reads 0
// writes 1
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What is a Race Condition?

Definition

A race condition occurs when multiple threads or processes access

shared data concurrently, and the final outcome depends on the spe-
cific, unpredictable order of their execution.

Example: Two threads incrementing a shared counter.

int counter = 0; // Shared resource
// Thread A

int temp = counter; // Reads 0
temp = temp + 1; // Becomes 1
counter = temp; // Writes 1

// Thread B (interleaves)
// reads 0
// writes 1

The final value of ‘counter’ could be 1 instead of the expected 2. Race
conditions are difficult to debug because they are non-deterministic.
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The Critical Section Problem

Definition: A critical section is a portion of code that accesses shared
resources (like a shared variable or file) and must be executed by only one
process or thread at a time.
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The Critical Section Problem

Definition: A critical section is a portion of code that accesses shared
resources (like a shared variable or file) and must be executed by only one
process or thread at a time. Three Essential Conditions for a Correct
Solution:

o Mutual Exclusion: If one process is executing in its critical section,
no other process may be executing in its critical section.

o Progress: If no process is in its critical section and some processes
wish to enter, then only those processes not in the remainder section
can participate in the decision of which will enter next, and this
decision cannot be postponed indefinitely.

o Bounded Waiting: There must be a limit on the number of times
that other processes are allowed to enter their critical sections after a
process has made a request to enter its critical section and before
that request is granted.
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Critical Section Visualization
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Busy Waiting and Its Drawbacks

o Many simple locking mechanisms use a loop that continuously checks
a condition (a spinlock).

o Busy waiting (or "spinning”) is a technique where a thread sits in a
tight loop, constantly consuming CPU cycles while waiting for a lock

to be released.
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Busy Waiting and Its Drawbacks

o Many simple locking mechanisms use a loop that continuously checks
a condition (a spinlock).

o Busy waiting (or "spinning”) is a technique where a thread sits in a
tight loop, constantly consuming CPU cycles while waiting for a lock

to be released.

Drawbacks:
o Wastes CPU time that could be used by other processes.

o Can lead to priority inversion on single-core systems.
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Busy Waiting and Its Drawbacks

o Many simple locking mechanisms use a loop that continuously checks
a condition (a spinlock).

o Busy waiting (or "spinning”) is a technique where a thread sits in a
tight loop, constantly consuming CPU cycles while waiting for a lock

to be released.
Drawbacks:
o Wastes CPU time that could be used by other processes.
o Can lead to priority inversion on single-core systems.
When is it acceptable?
o On multiprocessor systems where the wait time is expected to be very
short.
o As the basis for implementing higher-level blocking synchronization
primitives.
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Hardware & Software Approaches

CPU instructions that per-
form read-modify-write op-
erations in a single, indivis-
ible step.

Approach | Description Examples

Software | Algorithms that rely on | Peterson’'s Algorithm, Bak-
shared variables and logical | ery Algorithm
checks to satisfy the critical
section requirements.

Hardware | Special, low-level atomic | ‘test-and-set’, ‘compare-

and-swap'
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Hardware & Software Approaches

Approach | Description Examples

Software | Algorithms that rely on | Peterson’'s Algorithm, Bak-
shared variables and logical | ery Algorithm
checks to satisfy the critical
section requirements.

Hardware | Special, low-level atomic | ‘test-and-set’, ‘compare-
CPU instructions that per- | and-swap'
form read-modify-write op-
erations in a single, indivis-
ible step.

Key Point: Modern operating systems almost exclusively rely on

hardware-based atomic instructions as the foundation for all higher-level
synchronization tools (like mutexes and semaphores) because they are
faster and more reliable than complex software algorithms.
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Example: Fixing the Race with a Mutex

#include <pthread.h>

int counter 0;
pthread_mutex_t

lock;

void* increment(voidx arg) {

for (int i = 0; i < 100000; ++i) {
pthread_mutex_lock(&lock); // Acquire the lock
counter++;
pthread_mutex_unlock(&lock); // Release the lock
return NULL;
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Example: Fixing the Race with a Mutex

#include <pthread.h>

int counter

0;
pthread_mutex_t lock;

void* increment(voidx arg) {

for (int i = 0; i < 100000; ++i) {
pthread_mutex_lock(&lock); // Acquire the lock
counter—++;

pthread_mutex_unlock(&lock); // Release the lock
return NULL;
}

Analysis: The mutex ensures that only one thread can access the

‘counter++4' statement at any given time, thus preventing a race condition
and guaranteeing the correct final value.
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Key Takeaways

o Synchronization is essential in concurrent systems to prevent data
corruption from race conditions.

o The critical section problem requires that solutions satisfy mutual
exclusion, progress, and bounded waiting.

o Simple locking can lead to busy waiting, which is inefficient on
single-core systems.

o Modern OSes use atomic hardware instructions as the efficient,
reliable foundation for building higher-level synchronization primitives.
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Next Week Preview: Semaphores and Classical Problems

Building on our understanding of critical sections and hardware support,
we will delve into the powerful tools used for synchronization.
o Semaphores: The core concept of a semaphore and the ‘wait()' /
‘signal()’ operations.
o Mutexes vs. Semaphores: Understanding the differences and when
to use each.

o Classical Synchronization Problems: Solving famous
synchronization challenges like the Producer-Consumer Problem and

the Dining Philosophers Problem.
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Appendix: Quiz

Conceptual Questions
@ What is the difference between a race condition and a deadlock?

@ In the context of the critical section problem, explain the difference
between the ‘Progress' and ‘Bounded Waiting' conditions.

@ Why is busy waiting a significant problem on a single-core CPU but
less of an issue on a multi-core CPU?
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Appendix: Exercises

Coding Exercise

@ Write a C program that creates two threads. Each thread should
attempt to increment a shared global integer variable 100,000 times.

@ Run the program without any synchronization and observe the final
value. It should be less than 200,000.

® Add a mutex to the code to protect the shared variable. Re-run the
program and confirm that the final value is exactly 200,000.
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Appendix: Advanced Topics to Explore

Further Reading

o Peterson’s Algorithm: A classic software-only solution for the
critical section problem for two processes.

o The Bakery Algorithm: An elegant software solution that extends
to ‘n’ processes.

o Memory Models: The relationship between hardware
synchronization instructions and the memory consistency model of a
multi-core processor.

o Transactional Memory: An advanced research topic that allows for
atomic execution of a block of code, offering a higher-level
abstraction for concurrency.
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Agenda

@ Semaphores: Concept and Usage
@ wait() and signal() Semantics

@ Binary vs Counting Semaphores
@ Classical Problems:

» Bounded Buffer
» Dining Philosophers
» Readers—Writers

® Summary & Key Takeaways
® Next Week's Preview

SDB 0s 15 / 151 =



What is a Semaphore?

A Signaling Mechanism

A semaphore is an integer variable used for signaling between pro-
cesses, originally proposed by Edsger W. Dijkstra.
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What is a Semaphore?

A Signaling Mechanism

A semaphore is an integer variable used for signaling between pro-
cesses, originally proposed by Edsger W. Dijkstra.

The Two Atomic Operations:
o wait(S): Decrements the semaphore value ‘'S’. If 'S' becomes
negative, the process blocks. Also known as ‘P()" or ‘down()".

o signal(S): Increments the semaphore value ‘'S*. If ‘S was negative
before the increment, it unblocks a process waiting on ‘S’. Also
known as ‘V()' or ‘up()".
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What is a Semaphore?

A Signaling Mechanism

A semaphore is an integer variable used for signaling between pro-
cesses, originally proposed by Edsger W. Dijkstra.

The Two Atomic Operations:

o wait(S): Decrements the semaphore value ‘'S’. If 'S' becomes
negative, the process blocks. Also known as ‘P()" or ‘down()".

o signal(S): Increments the semaphore value ‘'S*. If ‘S was negative
before the increment, it unblocks a process waiting on ‘S’. Also
known as ‘V()' or ‘up()".

Analogy: Think of a semaphore as a key counter. ‘wait()' decrements the
available keys (access to a resource), and ‘signal()’ returns a key. If no
keys are available, a process must wait.
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Binary vs Counting Semaphores

Feature Binary Semaphore (Mu- | Counting Semaphore
tex)

Value Range | Oor 1 Any non-negative integer

Purpose Enforces mutual exclusion, | Controls access to a lim-
protecting a critical section | ited pool of resources

Use Case Protecting a shared vari- | Synchronizing a producer-
able from a race condition | consumer buffer with N

slots
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Binary vs Counting Semaphores

Feature Binary Semaphore (Mu- | Counting Semaphore
tex)

Value Range | Oor 1 Any non-negative integer

Purpose Enforces mutual exclusion, | Controls access to a lim-
protecting a critical section | ited pool of resources

Use Case Protecting a shared vari- | Synchronizing a producer-
able from a race condition | consumer buffer with N

slots

Relationship: A binary semaphore can be seen as a special case of a
counting semaphore, initialized to 1. Many systems implement mutexes as
optimized binary semaphores.
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The Bounded Buffer Problem

The Problem: A producer and consumer share a fixed-size buffer. The
producer generates data and puts it in the buffer; the consumer takes data
out.
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The Bounded Buffer Problem

The Problem: A producer and consumer share a fixed-size buffer. The
producer generates data and puts it in the buffer; the consumer takes data

out. Synchronization with Semaphores:
o mutex (binary, initialized to 1): For mutual exclusion, ensuring only
one process can access the buffer at a time.
o empty (counting, initialized to N): Counts the number of empty slots
in the buffer.
o full (counting, initialized to 0): Counts the number of filled slots in
the buffer.
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The Bounded Buffer Problem

The Problem: A producer and consumer share a fixed-size buffer. The
producer generates data and puts it in the buffer; the consumer takes data
out. Synchronization with Semaphores:
o mutex (binary, initialized to 1): For mutual exclusion, ensuring only
one process can access the buffer at a time.
o empty (counting, initialized to N): Counts the number of empty slots
in the buffer.
o full (counting, initialized to 0): Counts the number of filled slots in
the buffer.

Producer Code Fragment:

wait (empty); // Wait for an empty slot

wait (mutex) ; // Acquire exclusive access to buffer
// Insert an item into the buffer

signal (mutex) ; // Release exclusive access

signal(full); // Signal that a slot is full
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The Dining Philosophers Problem

The Problem: Five philosophers sit at a round table, with a single
chopstick between each pair. Each philosopher must pick up both adjacent
chopsticks to eat.
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The Dining Philosophers Problem
The Problem: Five philosophers sit at a round table, with a single
chopstick between each pair. Each philosopher must pick up both adjacent

chopsticks to eat.

Round Table
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The Dining Philosophers Problem
The Problem: Five philosophers sit at a round table, with a single
chopstick between each pair. Each philosopher must pick up both adjacent

chopsticks to eat.

Round Table
II

The Risk: This problem is a classic example of deadlock. If all five
philosophers pick up their right chopstick simultaneously, they will all be waiting
indefinitely for their left chopstick.
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The Readers—Writers Problem

The Problem: A shared data object is accessed by multiple processes.
o Readers: Can read the data concurrently with other readers.

o Writers: Must have exclusive access to the data.
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The Readers—Writers Problem

The Problem: A shared data object is accessed by multiple processes.
o Readers: Can read the data concurrently with other readers.
o Writers: Must have exclusive access to the data.

Semaphores Used:

o mutex (binary, initialized to 1): Used to protect the shared
‘readcount’ variable from race conditions.

o rwmutex (binary, initialized to 1): Enforces mutual exclusion for
writers and the first/last reader.

o ‘readcount’ (shared integer): Tracks how many readers are currently
in the critical section.
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Reader Code Fragment

wait (mutex);
readcount ++;
if (readcount == 1)
wait (rw_mutex); // First reader locks out writers
signal (mutex) ;

read(); // Reading is the critical section

wait (mutex);
readcount -—;
if (readcount == 0)
signal (rw_mutex); // Last reader allows writers
signal (mutex);
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Key Takeaways

o Semaphores are a powerful and simple primitive for synchronization,
providing both mutual exclusion and signaling.

o Binary semaphores are used for mutexes; counting semaphores are
for resource pools.

o The classical problems (Bounded Buffer, Dining Philosophers,
Readers—Writers) are excellent illustrations of how semaphores can be
used to solve complex synchronization challenges and prevent issues
like deadlock.
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Next Week Preview: Deadlock Modeling and Conditions

Building on our understanding of synchronization challenges, we will
formally define and model deadlocks.

o Resource Allocation Graphs: A visual model for detecting
deadlocks.

o Coffman’s Conditions: The four necessary conditions that must be
met for a deadlock to occur.

o Deadlock Examples: We'll revisit the Dining Philosophers problem
and analyze its deadlock potential in detail.
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Appendix: Quiz

Conceptual Questions

@ Explain the key difference in purpose between a mutex and a
semaphore.

@ How does a semaphore's ‘wait()" operation differ from a busy-waiting
loop?

@ In the Readers—Writers problem, why is a separate ‘'mutex’ needed to
protect the ‘readcount’ variable?
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Appendix: Exercises

Coding Exercise

@ Extend the Bounded Buffer producer code to include the consumer'’s
logic. Write a full program that simulates producers and consumers
passing data through a shared buffer.

@ Use counting semaphores to manage the ‘empty’ and 'full’ slots and a
binary semaphore to enforce mutual exclusion on the buffer.

@ Experiment with changing the buffer size and the number of
producers and consumers.
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Appendix: Advanced Topics to Explore

Further Reading

o Monitors: A higher-level synchronization primitive that combines a
mutex and condition variables into a single object-oriented construct.

o Futexes (Fast User-space Mutex): A low-level synchronization tool
in Linux that avoids kernel intervention for simple cases, improving
performance.

o Condition Variables: Primitives used with mutexes to allow threads
to wait for a specific condition to become true without busy-waiting.
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Week 3



Agenda

Introduction to Deadlocks
System Model and Resources
Coffman’s Necessary Conditions
Resource Allocation Graph (RAG)
Examples and Scenarios

Summary & Key Takeaways

©©e© 6 6 6 66

Next Week's Preview
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What is a Deadlock?

The Core Problem

A set of processes is in a deadlock if each process in the set is waiting
for a resource that is currently held by another process in the set.
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What is a Deadlock?

The Core Problem

A set of processes is in a deadlock if each process in the set is waiting
for a resource that is currently held by another process in the set.

Analogy: A classic example is a traffic gridlock at a four-way intersection
where each car is waiting for the one in front of it to move. No car can
proceed, and the entire system is stuck.
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What is a Deadlock?

The Core Problem

A set of processes is in a deadlock if each process in the set is waiting
for a resource that is currently held by another process in the set.

Analogy: A classic example is a traffic gridlock at a four-way intersection
where each car is waiting for the one in front of it to move. No car can
proceed, and the entire system is stuck. Examples in Computing;:

o Process P1 holds Mutex A and is waiting for Mutex B, which is held
by P2.

o Process P2 holds Mutex B and is waiting for Mutex A, which is held
by P1.
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System Model and Resource Types

o Processes request and use various types of resources, which can
include CPU cycles, memory blocks, |/O devices, file locks, or
synchronization primitives like semaphores.

o Each resource type can have one or more identical instances.

o The OS must allocate these resources in a way that avoids deadlock.

SDB 0s 29 / 151



System Model and Resource Types

o Processes request and use various types of resources, which can
include CPU cycles, memory blocks, |/O devices, file locks, or
synchronization primitives like semaphores.

o Each resource type can have one or more identical instances.

o The OS must allocate these resources in a way that avoids deadlock.

Process Resource Protocol

Each process follows a simple protocol when using a resource:
@ Request: The process requests the resource.
@ Use: The process uses the resource.

® Release: The process releases the resource.
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Coffman’s Necessary Conditions

For a deadlock to occur, all four of these conditions must hold
simultaneously in the system.

Condition

Description

Mutual Exclusion

At least one resource must be held in a non-sharable
mode. Only one process can use it at a time.

Hold and Wait

A process must be holding at least one resource
and waiting to acquire additional resources that are
currently held by other processes.

No Preemption

A resource cannot be forcibly taken away from a
process that is holding it. The process must release
it voluntarily.

Circular Wait

There must exist a set of waiting processes
(Po, P1,...,Ppn) such that Py is waiting for a re-
source held by P;, P; is waiting for a resource held
by P,, and so on, with P, waiting for a resource
held by Py.
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Resource Allocation Graph (RAG)

Modeling Deadlocks Visually

The Resource Allocation Graph is a directed graph used to model
and detect potential deadlocks.
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Resource Allocation Graph (RAG)

Modeling Deadlocks Visually

The Resource Allocation Graph is a directed graph used to model
and detect potential deadlocks.

Components:
o Process Nodes: Represented by circles (O).

o Resource Nodes: Represented by squares ((J). Dots within the
square denote instances of the resource type.

o Request Edge: A directed edge from a process to a resource
(P,' — Rj).

o Assignment Edge: A directed edge from a resource instance to a
process (R; — P;).
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RAG Example: No Deadlock
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RAG Example: No Deadlock

@ R1 R2

Analysis:

o There are no cycles in this graph.

o The path from P1 to R1 to P2 to R2 to P3 is linear.
Conclusion: No cycle in the RAG implies that the system is not in a

deadlock state.
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RAG Example: Deadlock

R1 R2
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RAG Example: Deadlock

R1 R2

Deadlock Analysis

o Cycle: A clear cycle exists: P > Ry — P, — Ry — Ps.

o Conclusion: Because each resource has only a single instance,
a cycle in the RAG is a necessary and sufficient condition for a
deadlock to exist.

SDB 0s 33 /151 m



Key Takeaways

o Deadlocks are a state where processes are permanently blocked,
waiting for resources held by each other.

o Coffman’s four conditions (Mutual Exclusion, Hold and Wait, No
Preemption, Circular Wait) are necessary for a deadlock to occur.

o The Resource Allocation Graph (RAG) is a valuable tool for
modeling resource requests and assignments.

o A cycle in the RAG indicates the possibility of a deadlock; for
single-instance resources, a cycle is a definitive sign of deadlock.
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Next Week Preview: Deadlock Prevention and Avoidance

Building on our understanding of how deadlocks are formed, we will
explore strategies for managing them.
o Deadlock Prevention: Strategies to ensure at least one of
Coffman’s conditions is never met.
o Deadlock Avoidance: The Banker's Algorithm and how to
dynamically check for safe states.

o Deadlock Detection and Recovery: How to identify a deadlock
after it has occurred and recover the system.
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Appendix: Quiz

Conceptual Questions
@ Explain how violating the "No Preemption” condition can prevent a
deadlock.
@ If a resource type has multiple instances, is a cycle in the Resource
Allocation Graph a guarantee of a deadlock? Explain why or why not.

@ Consider a system with a single resource and two processes. Can a
deadlock occur? Justify your answer using Coffman’s conditions.
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Appendix: Exercises

RAG Analysis Exercise
@ Draw a Resource Allocation Graph for the following state:

» Process P1 holds R1, requests R2.
» Process P2 holds R2, requests R3.
» Process P3 holds R3, requests R1.

@ Does a deadlock exist in this scenario? If so, identify the processes
and resources involved in the cycle.
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Appendix: Advanced Topics to Explore

Further Reading

o Livelock: A state similar to deadlock where processes are not blocked
but are continuously changing their state in response to each other,
preventing progress.

o Starvation: A situation where a process is repeatedly denied access
to a resource, even though it's available, because other processes are
always given priority.

o Wait-for Graph: A simplification of the RAG used for deadlock
detection when all resources have a single instance.
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Agenda

Deadlock Prevention Overview

Violating Coffman’s Conditions

Safe vs. Unsafe States

The Banker's Algorithm

Limitations and Real-World OS Practices
Summary & Key Takeaways
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Next Week's Preview
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Deadlock Prevention: The Strategy

Proactive Elimination

Deadlock prevention is a set of design-time policies and protocols

that ensure a system never enters a deadlock state by eliminating
one of the four necessary Coffman’s conditions.
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Deadlock Prevention: The Strategy

Proactive Elimination

Deadlock prevention is a set of design-time policies and protocols

that ensure a system never enters a deadlock state by eliminating
one of the four necessary Coffman’s conditions.

Key Characteristics:
o It's a proactive approach, built into the system’s design.
o It's often simple to implement but can lead to poor resource
utilization.
o The goal is to make deadlock impossible by violating a fundamental
condition.
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Violating Coffman’s Conditions

Condition to Break

Strategy

Mutual Exclusion

Allow resources to be shared (e.g., read-only files). This
is often not possible for non-sharable resources like a
printer or mutex.

Hold and Wait

Force processes to request all required resources at once,
or release all held resources before requesting new ones.
This can lead to resource starvation.

No Preemption

Allow the OS to preempt (forcefully take) a resource
from a process that is holding it and waiting for others.
This is only feasible for resources where state can be
easily saved and restored (e.g., CPU registers).

Circular Wait Impose a total global ordering on all resource types. A
process can only request resources in an increasing order
of enumeration.
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Violating Coffman’s Conditions

Condition to Break

Strategy

Mutual Exclusion

Allow resources to be shared (e.g., read-only files). This
is often not possible for non-sharable resources like a
printer or mutex.

Hold and Wait

Force processes to request all required resources at once,
or release all held resources before requesting new ones.
This can lead to resource starvation.

No Preemption

Allow the OS to preempt (forcefully take) a resource
from a process that is holding it and waiting for others.
This is only feasible for resources where state can be
easily saved and restored (e.g., CPU registers).

Circular Wait

Impose a total global ordering on all resource types. A
process can only request resources in an increasing order
of enumeration.

Most Practical Strategies: In general-purpose operating systems, breaking the
Hold and Wait or Circular Wait conditions are the most practical approaches.
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Deadlock Avoidance: Safe and Unsafe States

The Safe State Concept

A system is in a safe state if there exists a safe sequence of all
processes, where each process can acquire all its resources and run
to completion without causing a deadlock.
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Deadlock Avoidance: Safe and Unsafe States

The Safe State Concept

A system is in a safe state if there exists a safe sequence of all
processes, where each process can acquire all its resources and run
to completion without causing a deadlock.

o An unsafe state is a state where the OS cannot guarantee a safe
sequence exists.

o It's important to note that an unsafe state is not a deadlock, but it
has the potential to lead to one.

o Deadlock avoidance is the strategy of ensuring the system never
enters an unsafe state by carefully managing resource allocation.
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The Banker's Algorithm: Intuition

Concept: The Banker's Algorithm is a classic deadlock avoidance
algorithm designed by Dijkstra. It's an analogy to a banker who only
grants loans if they can guarantee that all customers can eventually pay
back their loans.
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The Banker's Algorithm: Intuition

Concept: The Banker's Algorithm is a classic deadlock avoidance
algorithm designed by Dijkstra. It's an analogy to a banker who only
grants loans if they can guarantee that all customers can eventually pay
back their loans. Assumptions:
o Each process must declare its maximum possible resource needs
upfront.
o The system tracks the current allocated resources, the maximum
needs, and the current available resources.
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The Banker's Algorithm: Intuition

Concept: The Banker's Algorithm is a classic deadlock avoidance
algorithm designed by Dijkstra. It's an analogy to a banker who only
grants loans if they can guarantee that all customers can eventually pay
back their loans. Assumptions:

o Each process must declare its maximum possible resource needs
upfront.
o The system tracks the current allocated resources, the maximum
needs, and the current available resources.
How it Works: When a process requests resources, the Banker's

Algorithm performs a safety check. The request is only granted if doing
so leaves the system in a safe state. Otherwise, the process must wait.
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Banker's Algorithm — Allocation Example

Scenario: A system with 10 instances of a single resource type.

Process | Max Need | Allocated | Need
PO 7 0 7
P1 5 2 3
P2 3 2 1

Available = 10 - (04+242) =6
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Banker's Algorithm — Allocation Example

Scenario: A system with 10 instances of a single resource type.

Process | Max Need | Allocated | Need
PO 7 0 7
P1 5 2 3
P2 3 2 1

Available = 10 - (04+2+42) = 6 Safety Analysis:
o We have 6 available instances.

o Can we satisfy P2's need of 17 Yes. Run P2 to completion. Available
becomes 6 +2 = 8.

o Now can we satisfy P1's need of 37 Yes. Run P1 to completion.
Available becomes 8 4+ 2 = 10.

o Finally, can we satisfy PQ’s need of 77 Yes. Run P0. Available
becomes 10 + 0 = 10.
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Banker's Algorithm — Allocation Example

Scenario: A system with 10 instances of a single resource type.

Process | Max Need | Allocated | Need
PO 7 0 7
P1 5 2 3
P2 3 2 1

Available = 10 - (04+2+42) = 6 Safety Analysis:
o We have 6 available instances.

o Can we satisfy P2's need of 17 Yes. Run P2 to completion. Available
becomes 6 +2 = 8.

o Now can we satisfy P1's need of 37 Yes. Run P1 to completion.
Available becomes 8 4+ 2 = 10.

o Finally, can we satisfy PQ’s need of 77 Yes. Run P0. Available
becomes 10 + 0 = 10.

Conclusion: The sequence (P2, P1, PO0) is a safe sequence. The system
is in a safe state.
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Limitations of the Banker's Algorithm

o Requires Prior Knowledge: Processes must declare their maximum
resource needs in advance, which is often not possible.

o High Overhead: The safety algorithm must be run every time a
process requests resources, which is computationally expensive.

o Static Process Set: Assumes a fixed number of processes that don't
change dynamically.

o Infrequent Use: Due to these limitations, the Banker's Algorithm is
rarely used in its full form in modern, general-purpose operating
systems.
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How Real OSes Handle Deadlocks

General-purpose operating systems typically do not implement full
deadlock avoidance or prevention. Instead, they use a mix of practical
strategies:

o Resource Ordering: For critical shared resources like mutexes, a
strict, global ordering is often enforced to break the circular wait
condition.

o Timeout-based Locking: A process requests a lock with a timeout.
If it cannot acquire the lock within the time limit, it releases all held
locks and tries again later.

o Hierarchical Locking: Locks are grouped into a hierarchy, and
processes must acquire locks in a specific order (e.g., always acquire a
higher-level lock before a lower-level one).

o Deadlock Detection and Recovery: A background process
periodically checks for deadlocks and, if one is found, takes action to
resolve it (e.g., terminating a process). This is what most OSes do.
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Key Takeaways

o Deadlock Prevention aims to make deadlock impossible by violating
one of the four necessary conditions.

o Deadlock Avoidance is a more dynamic approach that uses
information about future requests to ensure the system remains in a
safe state.

o The Banker’'s Algorithm is a classic example of an avoidance
algorithm, but its high overhead and strict requirements limit its
practical use.

o Real-world OSes often use a combination of partial prevention
strategies and deadlock detection rather than full prevention or
avoidance.
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Next Week Preview: Deadlock Detection and Recovery

In our final week on deadlocks, we will examine how to deal with them
when they are not prevented or avoided.
o Detection Algorithms: The logic behind how the OS can identify a
deadlock after it has occurred.
o Recovery Techniques: Strategies for breaking a deadlock, including
process termination, resource preemption, and rollback.

o Practical Implementation: A look at how detection and recovery
are used in database systems.

SDB 0s 48 / 151 wem



Appendix: Quiz

Conceptual Questions
@ Explain the key difference between deadlock prevention and deadlock
avoidance.
@ A system is in an unsafe state. Does this mean a deadlock has
occurred? Explain.
@ Describe a real-world scenario where a strict global resource ordering
could be applied to prevent a deadlock.
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Appendix: Exercises

Banker’s Algorithm Practice

@ A system has 12 instances of a resource type. The following
allocation is made:

» PO: Allocated 5, Max 10
» P1: Allocated 2, Max 4
» P2: Allocated 2, Max 9

@ Is the system in a safe state? If so, provide a safe sequence.

@ If P1 requests one more resource, will the Banker's Algorithm grant
the request? Justify your answer.
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Appendix: Advanced Topics to Explore

Further Reading

o Wait-for Graphs: A simplified tool for deadlock detection in
single-instance resource systems.

o Graph Reduction: The core algorithm used to find deadlocks in
Resource Allocation Graphs.

o Deadlock in Distributed Systems: The unique challenges of
detecting and resolving deadlocks when resources and processes are
spread across multiple machines.
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Week 5



Agenda

Deadlock Detection Strategy

Detection with Resource Allocation Graph (RAG)
Detection Algorithm for Multiple Instances
Recovery Strategies

Evaluation and Real-World Examples

Summary & Key Takeaways

©©e© 6 6 6 66

Next Week's Preview
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Deadlock Detection Strategy

Why and When to Use Detection

A deadlock detection and recovery strategy is used in systems where
deadlocks are not a frequent occurrence. Instead of preventing dead-
locks with strict policies, the system allows them to happen, then
identifies and resolves them.
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Deadlock Detection Strategy

Why and When to Use Detection

A deadlock detection and recovery strategy is used in systems where
deadlocks are not a frequent occurrence. Instead of preventing dead-
locks with strict policies, the system allows them to happen, then
identifies and resolves them.

Trade-offs:

o Advantages: Maximizes resource utilization and concurrency by not
imposing strict resource allocation policies.

o Disadvantages: The system must be able to periodically check for
deadlocks and incur the overhead of recovery, which can be complex
and may require aborting processes.
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Detection with RAG (Single-Instance Resources)

o In a system where each resource type has only a single instance, a
deadlock is equivalent to a cycle in the Resource Allocation Graph

(RAG).
o The detection strategy involves building the RAG and periodically
running a cycle-detection algorithm on it.

SDB 0S 54 / 151 wem



Detection with RAG (Single-Instance Resources)

o In a system where each resource type has only a single instance, a
deadlock is equivalent to a cycle in the Resource Allocation Graph
(RAG).

o The detection strategy involves building the RAG and periodically
running a cycle-detection algorithm on it.

Algorithm:

@ Construct the RAG based on current resource allocations and
requests.

@ Use a standard graph traversal algorithm, such as Depth-First
Search (DFS), starting from each process node.

@ If a back edge is found during the traversal, a cycle exists, and the
system is in a deadlock.
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Detection with RAG (Single-Instance Resources)

o In a system where each resource type has only a single instance, a

deadlock is equivalent to a cycle in the Resource Allocation Graph
(RAG).
o The detection strategy involves building the RAG and periodically
running a cycle-detection algorithm on it.
Algorithm:

@ Construct the RAG based on current resource allocations and
requests.

@ Use a standard graph traversal algorithm, such as Depth-First
Search (DFS), starting from each process node.

@ If a back edge is found during the traversal, a cycle exists, and the
system is in a deadlock.

Example: The Dining Philosophers problem RAG will form a cycle,
signifying a deadlock.
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Detection Algorithm — Multiple Instances

For systems with multiple instances of a resource type, a cycle in the RAG

is a necessary but not sufficient condition for deadlock. A more general
algorithm is needed.
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Detection Algorithm — Multiple Instances

For systems with multiple instances of a resource type, a cycle in the RAG
is a necessary but not sufficient condition for deadlock. A more general
algorithm is needed. Input Data Structures:
o Available Vector (V): A vector of size ‘m‘ (number of resource
types) showing the number of available instances of each type.
o Allocation Matrix (A): An ‘n x m' matrix where ‘A[i,j]" is the
number of instances of resource ‘j* allocated to process ‘i‘.
o Request Matrix (R): An ‘n x m' matrix where ‘R[i,j]' is the number
of instances of resource ‘j' that process ‘i' is currently requesting.
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Detection Algorithm — Multiple Instances

For systems with multiple instances of a resource type, a cycle in the RAG
is a necessary but not sufficient condition for deadlock. A more general
algorithm is needed. Input Data Structures:
o Available Vector (V): A vector of size ‘m‘ (number of resource
types) showing the number of available instances of each type.
o Allocation Matrix (A): An ‘n x m' matrix where ‘A[i,j]" is the
number of instances of resource ‘j* allocated to process ‘i‘.
o Request Matrix (R): An ‘n x m' matrix where ‘R[i,j]' is the number
of instances of resource ‘j' that process ‘i' is currently requesting.
Algorithm Logic: The algorithm is similar to the safety algorithm in

Banker's. It tries to find a sequence of processes that can finish. Any
process that cannot finish is deadlocked.
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Example: Deadlock Detection Matrix

Scenario: A system with 3 resource types (A, B, C).
Available = (3, 3, 2)

Process | Allocation | Request | Finish?
AI/B|C|]A B|C
PO 0Oj1j0/|0|0]O0 Yes
P1 210|012 |0]2 No
P2 3101210010 Yes
P3 211]1]1(0]0 No
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Example: Deadlock Detection Matrix

Scenario: A system with 3 resource types (A, B, C).
Available = (3, 3, 2)

Process | Allocation | Request | Finish?
AI/B|C|]A B|C
PO 0Oj1j0/|0|0]O0 Yes
P1 210|012 |0]2 No
P2 3101210010 Yes
P3 211]1]1(0]0 No
Analysis:

o PO and P2 can finish initially since their requests are 0.

o ‘Work' starts at (3, 3, 2) and increases to (3, 4, 2) after PO finishes,
then to (6, 4, 4) after P2 finishes.

o Neither P1 nor P3 can be satisfied with ‘Work' = (6, 4, 4). They are
deadlocked.
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Deadlock Recovery Techniques

Once a deadlock is detected, a recovery mechanism is needed to break the
cycle and restore the system to a non-deadlocked state.
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Deadlock Recovery Techniques

Once a deadlock is detected, a recovery mechanism is needed to break the

cycle and restore the system to a non-deadlocked state. 1. Process
Termination

o Kill all deadlocked processes: The most drastic option. Breaks the
cycle but can be very costly.

o Kill one by one: Terminate one process in the cycle at a time and
re-run the detection algorithm. This is more efficient but takes longer.
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Deadlock Recovery Techniques

Once a deadlock is detected, a recovery mechanism is needed to break the

cycle and restore the system to a non-deadlocked state. 1. Process
Termination

o Kill all deadlocked processes: The most drastic option. Breaks the
cycle but can be very costly.

o Kill one by one: Terminate one process in the cycle at a time and
re-run the detection algorithm. This is more efficient but takes longer.
2. Resource Preemption
o Preempt a resource: Forcibly take a resource from one process and
give it to another.

o This requires the ability to roll back the victim process to a previous
"safe” state. This is often achieved through checkpointing.
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Recovery Policy Decisions

When choosing a victim for termination or preemption, the OS must make
a policy decision based on cost.
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Recovery Policy Decisions

When choosing a victim for termination or preemption, the OS must make

a policy decision based on cost. Factors to consider:
o The priority of the process.
o How much CPU time a process has consumed so far.
o The number of resources held by the process.
o The number of resources needed to complete the process.
°

How many other processes will need to be rolled back.
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Recovery Policy Decisions

When choosing a victim for termination or preemption, the OS must make
a policy decision based on cost. Factors to consider:

o The priority of the process.

o How much CPU time a process has consumed so far.

o The number of resources held by the process.

o The number of resources needed to complete the process.
o How many other processes will need to be rolled back.

Important: Choosing a victim wisely minimizes the cost of recovery and
ensures the system can continue operating efficiently.
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Deadlock Handling in Real Systems

Most modern, general-purpose OSes take a pragmatic approach to
deadlocks, often relying on detection and recovery in specific contexts
rather than a global strategy.

o Linux: The kernel itself does not implement a global deadlock
detection algorithm. Instead, it relies on strict lock ordering
protocols in its core code to prevent deadlocks and uses a timeout
mechanism for specific resource locks.

o Windows: Similar to Linux, it relies on lock ordering and hierarchical
locking to avoid deadlocks. Components like the NTFS file system
and SQL Server implement their own deadlock detection and
recovery mechanisms (often via transaction rollback).
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Key Takeaways

o Deadlock detection is a strategy that identifies a deadlock after it
has occurred, trading simplicity for the risk of stalled processes.

o For single-instance resources, a cycle in the RAG is sufficient for
deadlock detection.

o For multiple-instance resources, a more complex matrix-based
algorithm is needed to determine if a safe state can be reached.

o Recovery involves making tough policy decisions, typically through
process termination or resource preemption.
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Next Week Preview: Virtual Machines and Hypervisors

Now that we have a solid understanding of how a single operating system
manages its resources, we will explore how multiple operating systems can
coexist on a single hardware platform.

o Types of Virtualization: Full, Para, and Hardware-Assisted.

o Hypervisor Architecture: The role of the Hypervisor in managing
VMs.

o VM Isolation and Resource Sharing: How VMs are isolated from
each other while sharing the same physical resources.
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Appendix: Quiz

Conceptual Questions
@ Under what conditions is a cycle in a Resource Allocation Graph a
necessary and sufficient condition for a deadlock?
@ What is the main trade-off of using a detection and recovery strategy
over a prevention strategy?
® How can the "deadlock detection algorithm for multiple instances”
distinguish between a deadlock and a safe state?
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Appendix: Exercises

Detection Algorithm Practice
@ Given a system with 3 processes and 3 resources, and the following
state:
Available: A=2, B=1, C=0
P1: Allocated (1,0,1), Request (0,1,0)
P2: Allocated (1,1,0), Request (0,0,1)
P3: Allocated (0,1,0), Request (2,0,0)

@ s the system in a deadlock state? Show your work by applying the
detection algorithm.

v

v vy
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Appendix: Advanced Topics to Explore

Further Reading

o Wait-for Graphs: A simplified tool for deadlock detection in
single-instance resource systems.

o Deadlock Detection in Distributed Systems: The unique
challenges of detecting and resolving deadlocks when resources and
processes are spread across multiple machines.

o Deadlock in Databases: How database management systems
(DBMS) use deadlock detection and transaction rollback for
concurrency control.
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Week 6



Agenda

@ Introduction to Virtualization

@ Types of Virtualization Techniques

@ Hypervisors: Type 1 and Type 2 Architectures
@ VMM Architecture and Responsibilities

® Use Cases and OS Examples

® Summary & Key Takeaways

@ Next Week's Preview
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What is Virtualization?

The Core Concept

Virtualization is the process of creating a software-based, logical
representation of physical hardware. A Virtual Machine (VM) is
the logical entity that encapsulates a complete operating system and
its applications.
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What is Virtualization?

The Core Concept

Virtualization is the process of creating a software-based, logical
representation of physical hardware. A Virtual Machine (VM) is

the logical entity that encapsulates a complete operating system and
its applications.

Analogy: Think of a large physical server as an apartment building.
Virtualization allows you to partition that building into multiple isolated
apartments (VMs), each with its own tenants (guest OS) and furnishings

(applications), all sharing the building's core resources (CPU, memory,
storage).
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What is Virtualization?

The Core Concept

Virtualization is the process of creating a software-based, logical
representation of physical hardware. A Virtual Machine (VM) is
the logical entity that encapsulates a complete operating system and
its applications.

Analogy: Think of a large physical server as an apartment building.
Virtualization allows you to partition that building into multiple isolated
apartments (VMs), each with its own tenants (guest OS) and furnishings
(applications), all sharing the building's core resources (CPU, memory,
storage).

The Virtual Machine Monitor (VMM) or Hypervisor is the software
layer that manages the creation and execution of these virtual machines.
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Why Virtualization? Key Benefits

o Resource Utilization: By consolidating multiple workloads onto a
single physical machine, virtualization dramatically increases resource
efficiency and reduces hardware costs.

o Isolation and Security: VMs are isolated from each other. A failure
or security breach in one VM does not affect the others on the same
host.

o Portability: A VM is just a file or a set of files. It can be easily
moved, copied, or backed up, making it highly portable.

o Simplified Management: Virtualization simplifies system
administration, testing, and disaster recovery.
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Why Virtualization? Key Benefits

o Resource Utilization: By consolidating multiple workloads onto a
single physical machine, virtualization dramatically increases resource
efficiency and reduces hardware costs.

o Isolation and Security: VMs are isolated from each other. A failure

or security breach in one VM does not affect the others on the same
host.

o Portability: A VM is just a file or a set of files. It can be easily
moved, copied, or backed up, making it highly portable.
o Simplified Management: Virtualization simplifies system
administration, testing, and disaster recovery.
Impact: Virtualization is the foundational technology for modern cloud
computing, enterprise data centers, and development/testing
environments.
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Virtualization Techniques

Technique Guest OS | Performance | Mechanism
Awareness

Full Virtualization | Unaware Moderate Binary transla-
tion of privi-
leged instruc-
tions

Paravirtualization | Modified High Guest OS uses
"hypercalls”
to commu-
nicate with
hypervisor

Hardware-Assisted | Unaware Highest Hardware ex-

tensions (Intel
VT-x, AMD-
V) trap priv-
ileged instruc-
tions
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Hypervisor Types: Type 1 vs. Type 2

Type Type 1 (Bare-metal) Type 2 (Hosted)
Architecture | Runs directly on the host | Runs as an application on top
hardware of a host OS
Performance | Very high, low overhead Lower, since it must pass

through the host OS’s layers
Use Case Data centers, enterprise | Desktop use, development,
servers, cloud computing running legacy applications
Examples Xen, VMware ESXi, Microsoft | VirtualBox, VMware Work-
Hyper-V station, QEMU
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Hypervisor Types: Type 1 vs. Type 2

Type

Type 1 (Bare-metal)

Type 2 (Hosted)

Architecture

Runs directly on the host
hardware

Runs as an application on top
of a host OS

Hyper-V

Performance | Very high, low overhead Lower, since it must pass

through the host OS’s layers

Use Case Data centers, enterprise | Desktop use, development,
servers, cloud computing running legacy applications

Examples Xen, VMware ESXi, Microsoft | VirtualBox, VMware Work-

station, QEMU

Type 1 Hypervisor

Hardware

Type 1 Hypervisor

SDB

0OS

Type 2 Hypervisor

[Host 03]

Hardware

Type 2 Hypervisor
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VMM Architecture Overview

Applications Applications
Guest OS 1 Guest OS 2
A ~ A _
\ /

Virtual Hardware

Traps privileged instructions

SDB

Virtualizes hardware

Hypervisor (VMM)
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VMM Responsibilities

Key Functions of a Hypervisor

o Resource Scheduling: Manages and allocates CPU time,
memory, and 1/O bandwidth to each VM.

o Hardware Emulation: Provides virtual devices (e.g., virtual
network cards, virtual disks) to each VM.

o Privilege Virtualization: Intercepts and handles privileged
instructions from the guest OS, ensuring isolation and
preventing direct hardware access.

o Memory lIsolation: Manages the translation of guest virtual

addresses to physical host addresses, ensuring VMs cannot
access each other’s memory.
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OS Virtualization Examples

o KVM (Kernel-based Virtual Machine): A Type 1 hypervisor
integrated into the Linux kernel. It leverages hardware-assisted
virtualization (VT-x/AMD-V) to run VMs efficiently.

o Xen: One of the first hypervisors, supporting both paravirtualization
and hardware-assisted modes. It's a key component in many cloud
platforms.

o VMware ESXi: A bare-metal Type 1 hypervisor known for its robust
features and high performance in enterprise data centers.

o VirtualBox: A popular, easy-to-use Type 2 hypervisor for desktop
use, enabling users to run different operating systems as applications.
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Key Takeaways

o Virtualization abstracts hardware to run multiple isolated OSes on a
single machine, improving resource utilization and security.

o Hypervisors (VMMs) are the core software that manages VMs,
handling scheduling, resource allocation, and isolation.

o There are two main types of hypervisors: Type 1 (Bare-metal) for
performance-critical environments and Type 2 (Hosted) for general
desktop use.

o Virtualization is the foundation for modern cloud computing and is
enabled by techniques like paravirtualization and hardware-assisted
virtualization.
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Next Week Preview: OS-Level Virtualization and
Containers

Building on our understanding of virtual machines, we'll explore a different
form of virtualization that is even more lightweight and efficient.

o Containers vs. Virtual Machines: A key comparison of their
differences in architecture and performance.

o Linux Namespaces and Cgroups: The core OS primitives that
make containerization possible.

o Container Runtimes: The role of tools like Docker and ‘runc’ in
managing containers.
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Appendix: Quiz

Conceptual Questions
@ Describe the main architectural difference between a Type 1 and a
Type 2 hypervisor.
@ Why is hardware-assisted virtualization generally considered more
efficient than full virtualization using binary translation?

@ What is the purpose of a "hypercall” in paravirtualization?
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Appendix: Exercises

Research & Discussion

@ Research and compare the performance overhead of running an
application in a VM on a Type 1 vs. a Type 2 hypervisor.

@ Investigate a specific hardware-assisted virtualization extension (e.g.,
Intel VT-x) and explain how it helps the hypervisor trap privileged
instructions.
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Appendix: Advanced Topics to Explore

Further Reading

o Nested Virtualization: The ability to run a hypervisor inside another
hypervisor.

o Memory Ballooning: A memory management technique used by
hypervisors to reclaim unused memory from VMs.

o 1/0 Virtualization (PCIl Passthrough): Giving a VM direct access
to a physical hardware device to bypass the hypervisor for maximum
performance.
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Week 7



Agenda

VMs vs. Containers: The Core Differences
OS-Level Virtualization: The Foundational Concept
Linux Namespaces and Control Groups (cgroups)
The Container Runtime Stack (Docker, runc)
Isolation, Performance, and Security

Summary & Key Takeaways

©©e© 6 6 6 66

Next Week's Preview
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VMs vs. Containers: The Core Differences

Architectural Comparison

Feature Virtual Machines Containers

Kernel Each VM has its own | Share the host OS kernel
guest OS kernel

Isolation Hardware-level (Hypervi- | OS-level ~ (Namespaces,
sor) cgroups)

Size Large (GBs), full OS im- | Small (MBs), application

age

+ dependencies

Startup Time

Slow (minutes)

Fast (seconds or millisec-
onds)

Resource Use

High, each VM has dedi-
cated resources

Low, share host resources
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VMs vs. Containers: The Core Differences

Architectural Comparison

age

Feature Virtual Machines Containers

Kernel Each VM has its own | Share the host OS kernel
guest OS kernel

Isolation Hardware-level (Hypervi- | OS-level ~ (Namespaces,
sor) cgroups)

Size Large (GBs), full OS im- | Small (MBs), application

+ dependencies

Startup Time

Slow (minutes)

Fast (seconds or millisec-
onds)

Resource Use

High, each VM has dedi-
cated resources

Low, share host resources

\.

Analogy: A VM is like a full house with its own utilities and kitchen, whereas a

container is like a single apartment within a building, sharing the building's

infrastructure.
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OS-Level Virtualization

The Container Foundation

OS-level virtualization is a technique where the operating system
kernel allows for the existence of multiple isolated user-space in-
stances. Instead of emulating hardware, it partitions the OS's re-
sources.
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OS-Level Virtualization

The Container Foundation

OS-level virtualization is a technique where the operating system
kernel allows for the existence of multiple isolated user-space in-
stances. Instead of emulating hardware, it partitions the OS's re-
sources.

The Linux kernel provides two key primitives that enable this:

o Linux Namespaces: Isolate processes so they have their own view of
system resources (e.g., process IDs, network interfaces, filesystems).

o Control Groups (cgroups): Enforce resource limits, ensuring a
container doesn't consume all of the host’s CPU, memory, or |/0.

A container is essentially a process (or a group of processes) wrapped in a
set of namespaces and restricted by cgroups.
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Linux Namespaces: The Isolation Mechanism

Namespaces provide a per-process view of system resources, giving each
container the illusion that it is running on a clean, isolated system.

Namespace Type | Resource Isolated

PID Process IDs

NET Network interfaces, IP addresses, routing tables
MNT Filesystem mounts

UTsS Hostname and domain name

IPC Interprocess communication mechanisms
USER User and group IDs
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Linux Namespaces: The Isolation Mechanism

Namespaces provide a per-process view of system resources, giving each
container the illusion that it is running on a clean, isolated system.

Namespace Type | Resource Isolated

PID Process IDs

NET Network interfaces, IP addresses, routing tables
MNT Filesystem mounts

UTsS Hostname and domain name

IPC Interprocess communication mechanisms
USER User and group IDs

Example: The ‘"MNT' namespace allows a container to have its own root
filesystem, separate from the host, using a feature like ‘chroot’ or
‘overlayfs'.
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Linux Control Groups (cgroups): The Resource Manager

Resource Enforcement

Control Groups are a kernel feature that hierarchically organizes
processes and controls their access to system resources.
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Linux Control Groups (cgroups): The Resource Manager

Resource Enforcement

Control Groups are a kernel feature that hierarchically organizes
processes and controls their access to system resources.

cgroups allow the OS to:
o Limit: Set hard limits on a container's CPU, memory, and 1/0.
o Monitor: Track resource usage of a container.
o Prioritize: Allocate different levels of access to resources.

This is critical for a multi-tenant environment, as it prevents a single
misbehaving container from monopolizing resources and impacting the
performance of others.
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The Container Runtime Stack

Docker is a high-level tool that simplifies the entire container lifecycle,
from building to running. It's built on a lower-level standard.
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The Container Runtime Stack

Docker is a high-level tool that simplifies the entire container lifecycle,
from building to running. It's built on a lower-level standard. Key

Components:
o Docker CLI: The command-line interface that users interact with.
o Docker Daemon: A background service that manages container
lifecycle, images, volumes, and networks.
o Container Runtime: A lower-level component that is responsible for
actually running the container.
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The Container Runtime Stack

Docker is a high-level tool that simplifies the entire container lifecycle,
from building to running. It's built on a lower-level standard. Key
Components:
o Docker CLI: The command-line interface that users interact with.
o Docker Daemon: A background service that manages container
lifecycle, images, volumes, and networks.
o Container Runtime: A lower-level component that is responsible for
actually running the container.
runc: A lightweight, portable container runtime that implements the
Open Container Initiative (OCI) specification. Docker uses ‘runc' under
the hood to handle the core task of creating and running containers based
on namespaces and cgroups.
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Container Security and Isolation

While containers share a kernel, their security is managed through multiple
layers of defense.

o Namespaces & cgroups: The core isolation mechanisms.

o Seccomp Filters: A mechanism to restrict the system calls a
container can make to the kernel, reducing the attack surface.

o Linux Capabilities: Instead of giving a container ‘root’ access,
specific, fine-grained privileges can be granted (e.g.,
‘CAP_NET_ADMIN' for network configuration).

o AppArmor / SELinux: Mandatory Access Control (MAC) systems
that enforce policies on what processes can access, based on labels
rather than user IDs.
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Key Takeaways

o Containers offer a lightweight and fast alternative to VMs by sharing
the host OS kernel and providing process-level isolation.

o The core technologies enabling containers are Linux Namespaces
(for isolation) and Control Groups (for resource management).

o Tools like Docker simplify the entire workflow, while a low-level
runtime like ‘runc’ handles the actual container creation and
execution.

o Containers are the foundation of modern microservices
architectures and CI/CD pipelines.
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Next Week Preview: Isolation Internals — A Deep Dive

To truly understand how containers work, we will peel back the layers and
look at the underlying mechanisms in more detail.
o Namespaces in Detail: A technical breakdown of how each
namespace type is implemented and what it isolates.
o cgroups V1 vs. V2: Understanding the evolution of control groups
and their differences.

o Container Runtime Lifecycle: A step-by-step look at how a
command like ‘docker run’ actually creates a container.
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Appendix: Quiz

Conceptual Questions

@ What is the main security implication of a container sharing the host
OS kernel, compared to a VM?

@ A user wants to limit a container's memory to 512MB and its CPU
usage to 50%. Which Linux kernel primitive would they use?

@ Explain the role of a union filesystem (like ‘overlayfs') in container
images.
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Appendix: Exercises

Hands-on Practice
@ Use the ‘unshare’ command to create a new shell with its own PID
namespace. Verify that the new shell has a PID of 1.
@ Use the ‘docker inspect’ command on a running container to view the
cgroups path and the applied resource limits.
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Appendix: Advanced Topics to Explore

Further Reading

o Container Networking: The various ways containers are given
network connectivity (e.g., bridge mode, overlay networks).

o Container Orchestration: Tools like Kubernetes and Swarm that
automate the deployment, scaling, and management of containers.

o Container Sandboxes: Alternative container runtimes (e.g., Kata
Containers) that provide VM-like isolation while maintaining
container-like speed.
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Week 8



Agenda

@ Linux Namespaces: The Isolation Primitives

@ Control Groups (cgroups) vl vs. v2

@ The Container Lifecycle from an OS Perspective
@ Coordinating Containers via OS Interfaces

® Summary & Key Takeaways

® Next Week's Preview
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Linux Namespaces — The Isolation Primitives

Recap: The Building Blocks

Linux Namespaces provide process-level isolation by giving a pro-
cess its own separate view of a specific system resource. A process
can be part of multiple namespaces simultaneously, each one provid-
ing a different layer of isolation.
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Linux Namespaces — The Isolation Primitives

Recap: The Building Blocks

Linux Namespaces provide process-level isolation by giving a pro-
cess its own separate view of a specific system resource. A process
can be part of multiple namespaces simultaneously, each one provid-
ing a different layer of isolation.

How it works:

o A process running on a host is part of the host's default set of
namespaces.

o When creating a container, the runtime uses a system call like
‘clone()" or ‘unshare()' to create new namespaces for the child
process.

o The child process (and its children) will then have their own isolated
view of that specific resource.
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Key Namespaces: PID and USER

PID Namespace: Process ID Isolation

o Isolates the process ID (PID) space. The first process in a new PID
namespace gets PID 1 and acts as the ‘init* process for that
namespace.

o The container’'s PID 1 is not the same as the host's PID 1, preventing
a container from killing critical host processes.

o Enables clean process trees within the container, allowing for clean
shutdown.
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Key Namespaces: PID and USER

PID Namespace: Process ID Isolation
o Isolates the process ID (PID) space. The first process in a new PID
namespace gets PID 1 and acts as the ‘init* process for that
namespace.
o The container’'s PID 1 is not the same as the host's PID 1, preventing
a container from killing critical host processes.
o Enables clean process trees within the container, allowing for clean
shutdown.
USER Namespace: Privilege Isolation
o lIsolates user and group ID space. A user inside a container (e.g.,
‘root') can be mapped to an unprivileged user on the host.

o This is a critical security feature, as it allows containers to run as
‘root’ without having root privileges on the host system.
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Key Namespaces: Network and Mount

Network (NET) Namespace

o Each network namespace has its own network stack, including
network interfaces, IP addresses, routing tables, and firewall rules.

o The host can use virtual Ethernet (‘veth') pairs to connect a
container’s network namespace to the host’s network or to other
containers.
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Key Namespaces: Network and Mount

Network (NET) Namespace

o Each network namespace has its own network stack, including
network interfaces, IP addresses, routing tables, and firewall rules.

o The host can use virtual Ethernet (‘veth') pairs to connect a
container’s network namespace to the host’s network or to other
containers.

Mount (MNT) Namespace
o lIsolates the filesystem’s mount points.

o This allows each container to have its own filesystem hierarchy,
independent of the host.

o This is often implemented using ‘chroot' and a layered filesystem like
‘overlayfs' to present a full root filesystem to the container.
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Other Namespaces: UTS and IPC

UTS Namespace
o Isolates the system's hostname and domain name.

o This allows each container to have its own unique hostname.
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Other Namespaces: UTS and IPC

UTS Namespace
o Isolates the system's hostname and domain name.

o This allows each container to have its own unique hostname.

IPC Namespace
o lIsolates inter-process communication resources.
o This prevents processes in one container from interfering with System
V IPC or POSIX message queues used by processes in other
containers.
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Control Groups (cgroups): vl vs. v2

cgroups vl
o The original version, in use for many years.

o Has a separate hierarchy for each controller (e.g., CPU, Memory,
I/O). This can be complex to manage.

o A single process can be in multiple cgroups, one for each resource
controller.
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Control Groups (cgroups): vl vs. v2

cgroups vl
o The original version, in use for many years.

o Has a separate hierarchy for each controller (e.g., CPU, Memory,
I/O). This can be complex to manage.

o A single process can be in multiple cgroups, one for each resource
controller.

cgroups v2

o The modern, unified version of cgroups.

©

All resource controllers share a single, unified hierarchy.

©

Enforces a "single writer” rule, where a process can only be in a single
cgroup. This simplifies management and provides better consistency.

©

Supports better resource delegation and hierarchical management.
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The Container Lifecycle (from an OS View)

Step-by-Step Container Creation

When a user runs a command like 'docker run‘, the following low-
level steps occur:

@ The container runtime calls ‘clone()" with flags to create new
namespaces (e.g., ‘CLONE_NEWPID', ‘CLONE_NEWNET").

@ The runtime creates a new cgroup and adds the container’s
process to it. Resource limits are configured.

@ The container’s root filesystem is mounted using ‘pivot_root'
or ‘chroot’.

@ The hostname is set, and user/group ID mappings are
configured.

® The specified command (e.g., ‘/bin/bash’) is executed as PID
1 within the new namespace.
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Coordinating Containers via OS Interfaces

o Container orchestration systems like Kubernetes are built on these
core OS primitives.

o Kubernetes’ ‘kubelet’ process on each node is responsible for telling
the container runtime to create and manage containers.

o It uses cgroups to enforce a Pod's resource requests and limits,
ensuring predictable performance.

o It leverages namespaces to provide network and process isolation
between different Pods on the same node.
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Coordinating Containers via OS Interfaces

o Container orchestration systems like Kubernetes are built on these
core OS primitives.

o Kubernetes’ ‘kubelet’ process on each node is responsible for telling
the container runtime to create and manage containers.

o It uses cgroups to enforce a Pod's resource requests and limits,
ensuring predictable performance.

o It leverages namespaces to provide network and process isolation
between different Pods on the same node.

Conclusion: The Linux kernel acts as the ultimate orchestrator, providing
the necessary low-level hooks for higher-level tools to build complex,
multi-tenant systems.
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Key Takeaways

o Linux Namespaces are the kernel’s core mechanism for isolating
system resources, enabling a process to have its own view of PIDs,
network stack, filesystem, etc.

o cgroups are the kernel's mechanism for managing and enforcing
resource usage (CPU, memory, 1/0) to ensure fair sharing.

o The combination of these two features allows for lightweight and
secure OS-level virtualization.

o The entire container lifecycle, from creation to destruction, is
managed through these fundamental kernel interfaces.
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Next Week Preview: Coordination in Distributed OS

Having covered single-host OS virtualization, we will now turn our
attention to the challenges of managing resources and state across
multiple machines.

o Clock Synchronization: The problem of keeping time consistent
across a distributed system.

o Remote Procedure Calls (RPC): How processes on different
machines can communicate.

o Consensus Algorithms: How distributed systems agree on a single
state (e.g., Raft, Paxos).
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Appendix: Quiz

Conceptual Questions

@ Explain why a container running as ‘root’ is not as dangerous as a
process running as ‘root’ on the host, using the concept of
namespaces.

@ What is the primary benefit of the unified hierarchy in cgroups v2
compared to cgroups v1?

@ Which combination of namespaces is essential for a container to have
its own isolated filesystem and process tree?
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Appendix: Exercises

Hands-on Practice

@ Using the ‘unshare’ command, create a shell in a new mount
namespace. Create a file inside that shell and then exit. Check the
host’s filesystem to confirm the file is not visible.

@ Create a new cgroup, configure a memory limit for it, and then run a
process inside it that tries to exceed that limit. Observe the kernel's
reaction.
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Appendix: Advanced Topics to Explore

Further Reading

o eBPF (extended Berkeley Packet Filter): A powerful kernel
technology that allows for dynamic, safe, and efficient tracing and
networking, which is heavily used in modern container networking and
security.

o OverlayFS: A type of union filesystem used extensively in containers
to create a writable layer on top of a read-only base image, making
images efficient to share.

o The OCI (Open Container Initiative) Specification: The open
standard that defines how container images and runtimes should
operate, ensuring interoperability between tools.
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Week 9



Agenda

Coordination in Distributed Systems

Time and Clock Synchronization

Distributed Mutual Exclusion

Naming, Resource Sharing, and Transparency
Examples of Distributed OS Features
Summary & Key Takeaways

©©e© 6 6 6 66

Next Week's Preview
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Why Is Coordination Challenging?

The Fundamental Challenges

Distributed systems are composed of multiple independent nodes that
communicate over a network. This presents fundamental challenges
that don't exist in a single-machine OS.
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Why Is Coordination Challenging?

The Fundamental Challenges

Distributed systems are composed of multiple independent nodes that
communicate over a network. This presents fundamental challenges
that don't exist in a single-machine OS.

Key Issues:
o No Shared Memory: Processes can't directly inspect each other’s
state; all communication must be through messages.
o No Global Clock: Each node has its own clock that can drift,
making it difficult to establish a global ordering of events.

o Message Delays and Failures: Messages can be lost, corrupted, or
delayed, and nodes can fail independently.
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Why Is Coordination Challenging?

The Fundamental Challenges

Distributed systems are composed of multiple independent nodes that
communicate over a network. This presents fundamental challenges
that don't exist in a single-machine OS.

Key Issues:

o No Shared Memory: Processes can't directly inspect each other’s
state; all communication must be through messages.

o No Global Clock: Each node has its own clock that can drift,
making it difficult to establish a global ordering of events.

o Message Delays and Failures: Messages can be lost, corrupted, or
delayed, and nodes can fail independently.

The goal of a distributed OS is to hide these challenges from the user,
providing an illusion of a single, consistent system.
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Transparency Goals in a Distributed OS

Transparency is a core design principle of distributed systems, aiming to
hide the complexity of the underlying architecture.

Transparency Type | Description

Access Use the same interface for local and remote re-
sources. (e.g., ‘read()' works on a local file or a
remote file.)

Location Hide the physical location of a resource. The user
doesn't need to know which node a file or service
is on.

Migration The ability to move processes or data without
affecting the user or application.

Replication Hide the fact that resources might be replicated
for fault tolerance or performance.

Concurrency Allow multiple users to safely access a shared re-
source at the same time.

Failure Mask failures of nodes or communication links so
the system continues to operate.
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Time and Clock Synchronization

The Problem of Time

Each computer has its own physical clock, which can drift and be-
come unsynchronized. Establishing a globally consistent time is cru-
cial for logging, event ordering, and mutual exclusion.
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Time and Clock Synchronization

The Problem of Time

Each computer has its own physical clock, which can drift and be-
come unsynchronized. Establishing a globally consistent time is cru-
cial for logging, event ordering, and mutual exclusion.

Algorithms for Clock Synchronization:

o Cristian’s Algorithm: A simple client-server model. A client sends a
request to a time server and adjusts its clock based on the response
time, factoring in network latency.

o Berkeley Algorithm: An active server polls all clients for their time,
calculates an average, and tells each client how to adjust its clock (no
sudden jumps).

o NTP (Network Time Protocol): The standard for time
synchronization on the internet. It uses a hierarchical, fault-tolerant
structure of time servers to achieve high accuracy.
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Logical Clocks (Lamport Timestamps)

The " Happens-Before” Relationship

Logical clocks don't synchronize physical time. Instead, they provide
a way to establish a causal order of events, answering the question:
"Did event A happen before event B?"
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Logical Clocks (Lamport Timestamps)

The " Happens-Before” Relationship

Logical clocks don't synchronize physical time. Instead, they provide
a way to establish a causal order of events, answering the question:

"Did event A happen before event B?"

Lamport’s Algorithm:
o Each process maintains a local counter (the logical clock).
o The clock is incremented before each event.
o When a process sends a message, it includes its current timestamp.

o When a process receives a message, it updates its own clock to be the
maximum of its current value and the message's timestamp, plus one.
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Distributed Mutual Exclusion

Sharing a Critical Section

The goal of distributed mutual exclusion is to ensure that only one process

at a time can access a shared resource, even though it's distributed across
multiple nodes.
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Distributed Mutual Exclusion

Sharing a Critical Section

multiple nodes.

The goal of distributed mutual exclusion is to ensure that only one process
at a time can access a shared resource, even though it's distributed across

Algorithm

How it Works

Trade-offs

Centralized

A single coordinator grants
access requests.

Simple, but a single point of
failure and bottleneck.

Ricart-Agrawala

Processes request access
from all others, and enter if
they get ‘OK' replies.

No single point of failure,
but high message overhead.

Token-based

A special token circulates.
The process holding the to-
ken can enter the critical
section.

Low message count, but
complex to recover if the to-
ken is lost.

SDB
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Naming and Resource Sharing

Providing a Unified View

A distributed OS must provide a global naming service that allows
processes to locate and access resources (files, devices, services) with-
out knowing their physical location.
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Naming and Resource Sharing

Providing a Unified View

A distributed OS must provide a global naming service that allows
processes to locate and access resources (files, devices, services) with-
out knowing their physical location.

Examples:

o Remote File Systems: Tools like NFS (Network File System) and
AFS (Andrew File System) allow clients to access and manage files
on a remote server as if they were local.

o Distributed Shared Memory (DSM): Provides the illusion of a
shared memory space across multiple nodes, abstracting away the
need for explicit message passing.

o Naming Services: Systems like DNS and directory services (e.g.,
LDAP) provide a hierarchical, location-independent way to find
resources.
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Distributed OS Examples

o Amoeba: A microkernel-based distributed OS from the 1980s. It
focused on an object-based naming system, where all resources were
treated as objects with capabilities.

o Sprite: A research OS from the 1990s that provided a single-system
image, allowing processes to migrate between nodes and share a
global file system.

o Plan 9 from Bell Labs: A research OS that pioneered the concept of
"everything is a file,” providing a uniform, hierarchical namespace for
all system resources.

o Google Fuchsia: A modern distributed-ready OS with a microkernel
architecture and a component-based model, designed for a wide range
of devices from phones to large-scale data centers.
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Key Takeaways

o The fundamental challenges of distributed systems are the absence of
shared memory and a global clock.

o Transparency is the core design goal to hide this complexity from the
user.

o Clock synchronization (physical and logical) and distributed
mutual exclusion are essential for coordinating events and resource
access.

o Global naming services and distributed shared memory are key
features that provide a unified, single-system view.
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Next Week Preview: Distributed Synchronization and
Consensus

Building on our understanding of distributed coordination, we will delve
into the problem of achieving consensus and electing a leader in a
fault-prone distributed system.
o Election Algorithms: The process of choosing a coordinator or
leader from a set of processes.
o Leader-based Coordination: How a leader can simplify resource
management and message passing.
o Paxos/Raft Consensus Overview: The core concepts of famous
consensus algorithms that ensure all nodes agree on a single value,
even with failures.
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Appendix: Quiz

Conceptual Questions

@ What is the key difference in purpose between a physical clock
synchronization algorithm (like NTP) and a logical clock (like
Lamport timestamps)?

@ Describe a scenario where a system with concurrency transparency
would be beneficial.

® What is the main drawback of using a centralized approach for
distributed mutual exclusion?
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Appendix: Exercises

Design & Discussion

@ You are designing a distributed file system. Which types of
transparency from our list would be the most important to
implement, and why?

@ Consider a three-node system where each node has a Lamport clock.
Trace the logical clock values for a series of events: P1 sends a

message to P2, then P2 sends a message to P3, then P3 sends a
message to P1.
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Appendix: Advanced Topics to Explore

Further Reading

o Vector Clocks: A more powerful extension of logical clocks that can
determine causal relationships between any two events.

o The CAP Theorem: A fundamental theorem in distributed systems
that describes the trade-off between Consistency, Availability, and
Partition Tolerance.

o Two-Phase Commit: A protocol used to ensure that all nodes in a
distributed transaction either commit or abort the transaction.
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Week 10



Agenda

The Need for Distributed Synchronization
Leader Election Algorithms (Bully, Ring)
Distributed Consensus: The Core Problem
Paxos and Raft: A Comparison

Fault Tolerance in Distributed Systems

Summary & Key Takeaways

©©e© 6 6 6 66

Next Week's Preview

SDB 0S 117 / 151 s



The Need for Distributed Synchronization

Why do we need it?

In a distributed system, nodes must coordinate their actions and
maintain a consistent view of the system'’s state without a central
authority or shared memory. This is essential for reliability and cor-
rectness.
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The Need for Distributed Synchronization

Why do we need it?

In a distributed system, nodes must coordinate their actions and
maintain a consistent view of the system'’s state without a central
authority or shared memory. This is essential for reliability and cor-
rectness.

Key Use Cases:

o Leader Election: Choosing a single node to act as a coordinator for
a specific task.

o Atomic Operations: Ensuring that a series of operations either all
succeed or all fail across all nodes (e.g., a distributed database
transaction).

o State Replication: Keeping the state of a service consistent across
multiple machines.

Goal: Achieve a state of agreement and consistency despite unpredictable
network delays and node failures.
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Leader Election Problem

The Problem of Coordination

The leader election problem is a classic challenge in distributed sys-

tems: how do a group of nodes, with no central coordinator, collec-
tively choose one node to be the leader?
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Leader Election Problem

The Problem of Coordination

The leader election problem is a classic challenge in distributed sys-
tems: how do a group of nodes, with no central coordinator, collec-
tively choose one node to be the leader?

Requirements for a Leader Election Algorithm:
o Uniqueness: At any given time, only one leader is elected.
o Termination: The process must eventually terminate, with a leader
being chosen.
o Robustness: The algorithm should be able to handle node failures
and new nodes joining the system.
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Bully Algorithm

The " Bully” Approach

In the Bully Algorithm, a process detects the leader has failed and
starts an election. It sends ‘ELECTION‘ messages to all nodes with
higher IDs.
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Bully Algorithm

The " Bully” Approach

In the Bully Algorithm, a process detects the leader has failed and
starts an election. It sends ‘ELECTION‘ messages to all nodes with
higher IDs.

How it works:
o If a higher-ID node responds with an ‘OK* message, the bully stands
down and waits for the new leader's ‘COORDINATOR' message.

o If no response is received after a timeout, the bully assumes it's the
highest-ID node and declares itself the new leader by sending a
‘COORDINATOR' message to all nodes.
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Bully Algorithm

The " Bully” Approach

In the Bully Algorithm, a process detects the leader has failed and
starts an election. It sends ‘ELECTION‘ messages to all nodes with
higher IDs.

How it works:
o If a higher-ID node responds with an ‘OK* message, the bully stands
down and waits for the new leader’'s ‘COORDINATOR' message.

o If no response is received after a timeout, the bully assumes it's the
highest-ID node and declares itself the new leader by sending a
‘COORDINATOR' message to all nodes.

Trade-offs:
o Pros: Simple to understand; the highest-ID node always wins.

o Cons: Can generate a high volume of messages; assumes reliable
message passing for failure detection.

SDB 0s 120 / 151



Ring-Based Election Algorithm

Passing a Token

In the Ring Algorithm, all nodes are arranged in a logical ring. A
failed leader is detected, and the next node in the ring starts the
election by sending an ‘ELECTION' message.
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Ring-Based Election Algorithm

Passing a Token

In the Ring Algorithm, all nodes are arranged in a logical ring. A
failed leader is detected, and the next node in the ring starts the
election by sending an ‘ELECTION' message.

How it works:
o The 'ELECTION' message contains the initiator's ID.
o As the message circulates around the ring, each node adds its own ID
if it's higher than the current ID in the message.

o The message returns to the initiator, which then sends a
‘COORDINATOR'" message containing the highest ID it received.
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Ring-Based Election Algorithm

Passing a Token

In the Ring Algorithm, all nodes are arranged in a logical ring. A
failed leader is detected, and the next node in the ring starts the
election by sending an ‘ELECTION' message.

How it works:
o The 'ELECTION' message contains the initiator's ID.

o As the message circulates around the ring, each node adds its own ID
if it's higher than the current ID in the message.

o The message returns to the initiator, which then sends a
‘COORDINATOR'" message containing the highest ID it received.

Trade-offs:
o Pros: Message-efficient (at most 2N messages for N nodes).

o Cons: Slow to elect a leader in a large ring; failure of a single node
can break the ring.
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Distributed Consensus: The Core Problem

Agreement on a Single Value

Distributed Consensus is the problem of getting a group of nodes
to agree on a single, shared value. It is a fundamental problem
in distributed systems and is a core component of replicated state
machines.
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Distributed Consensus: The Core Problem

Agreement on a Single Value

Distributed Consensus is the problem of getting a group of nodes
to agree on a single, shared value. It is a fundamental problem
in distributed systems and is a core component of replicated state
machines.

Key Properties of Consensus Algorithms:
o Safety: Nothing bad happens.

» Agreement: All nodes that decide on a value, decide on the same
value.
» Validity: The decided value must be one of the proposed values.

o Liveness: Something good eventually happens.
» Termination: All non-faulty processes eventually decide on a value.
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Paxos Overview (Simplified)

The First Consensus Algorithm

Paxos is a family of protocols for solving the consensus problem. It's
notoriously difficult to understand and implement correctly.
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Paxos Overview (Simplified)

The First Consensus Algorithm

Paxos is a family of protocols for solving the consensus problem. It's
notoriously difficult to understand and implement correctly.

Roles:
o Proposer: Proposes a value to be agreed upon.

o Acceptor: Votes on proposed values. A majority of acceptors
constitutes a quorum.

o Learner: Learns the final decided value.
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Paxos Overview (Simplified)

The First Consensus Algorithm

Paxos is a family of protocols for solving the consensus problem. It's
notoriously difficult to understand and implement correctly.

Roles:
o Proposer: Proposes a value to be agreed upon.

o Acceptor: Votes on proposed values. A majority of acceptors
constitutes a quorum.

o Learner: Learns the final decided value.
Two Phases:

@ Phase 1 (Prepare/Promise): A proposer asks acceptors if they're
willing to accept a value.

@ Phase 2 (Accept/Commit): If a majority agrees, the proposer
sends the value to be committed.
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Raft Consensus Algorithm

A Modern, Understandable Alternative

Raft is a leader-based consensus algorithm designed to be more understand-
able than Paxos. Its key idea is to first elect a stable leader, and then have
the leader manage the replicated log.
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Raft Consensus Algorithm

A Modern, Understandable Alternative

Raft is a leader-based consensus algorithm designed to be more understand-
able than Paxos. Its key idea is to first elect a stable leader, and then have
the leader manage the replicated log.

Roles:
@ Leader: The single node that handles all client requests and manages log replication.
@ Follower: Passive nodes that only respond to leader requests.

@ Candidate: A follower that has timed out and is attempting to become the new leader.
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Raft Consensus Algorithm

A Modern, Understandable Alternative

Raft is a leader-based consensus algorithm designed to be more understand-
able than Paxos. Its key idea is to first elect a stable leader, and then have
the leader manage the replicated log.

Roles:
@ Leader: The single node that handles all client requests and manages log replication.
@ Follower: Passive nodes that only respond to leader requests.
@ Candidate: A follower that has timed out and is attempting to become the new leader.
Key Mechanisms:
@ Leader Election: Followers use randomized timeouts to trigger elections.

O Log Replication: The leader replicates a sequence of commands (the log) to all followers.
A command is committed once a majority of followers have stored it.

Use Cases: etcd, Consul, and the Kubernetes API Server.
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Handling Faults in Coordination

Ensuring Reliability

A core goal of these protocols is to function correctly despite node
crashes, network partitions, and message loss.
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Handling Faults in Coordination

Ensuring Reliability

A core goal of these protocols is to function correctly despite node
crashes, network partitions, and message loss.

Common Fault Tolerance Techniques:

o Quorum-based Protocols: A decision is only made after a majority
of nodes have agreed. This ensures the system can continue
operating as long as a majority of nodes are available (e.g., 2f +1
nodes can tolerate f failures).

o Timeouts and Retries: Used to detect presumed failures. If a
message isn't acknowledged within a certain time, the sender assumes
the receiver is down and retries the action.

o Persistent State: All critical state (e.g., the log in Raft) is written
to a persistent disk before being acknowledged. This allows nodes to
recover their state after a crash.
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Key Takeaways

o Distributed synchronization is essential for creating reliable systems
that operate without a central point of control.

o Leader election algorithms like Bully and Ring provide ways for
nodes to choose a coordinator.

o Consensus protocols like Paxos and Raft are the gold standard for
ensuring a consistent, replicated state across a cluster.

o All these protocols rely on a majority-based quorum to ensure safety
and liveness in the face of faults.
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Next Week Preview: OS Virtualization & Coordination
Case Studies

In our final week, we'll connect the concepts we've learned to real-world
systems.
o Linux Containers & Kubernetes: How container orchestration
leverages namespaces, cgroups, and leader election.
o VMware & vMotion: How a virtualized environment coordinates
live migration of VMs.

o Zookeeper & etcd: An overview of these production-grade
coordination services and the algorithms they use.
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Appendix: Quiz

Conceptual Questions

@ What is the main difference between the ‘Coordinator' message in the
Bully algorithm and the one in the Ring algorithm?
@ What is the key advantage of Raft's log replication model over Paxos?

@ In a 5-node cluster, how many nodes must be non-faulty to achieve
consensus?
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Appendix: Exercises

Thought Experiment
@ Design a simple leader election algorithm for a network where nodes
are organized in a 2D grid.
@ Research the role of the ‘etcd’ component in a Kubernetes cluster and
explain how it uses a consensus algorithm.
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Appendix: Advanced Topics to Explore

Further Reading

o Consensus in the BFT (Byzantine Fault Tolerance) Model: A
more complex problem where nodes can be malicious.

o The FLP Impossibility Result: A famous theorem in distributed
computing that shows that it's impossible to design a perfect
consensus algorithm in an asynchronous system with even a single
crash failure.

o The Raft paper: The original paper is a great example of a
well-written technical paper, designed for clarity.
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Week 11



Agenda

Real-World OS Coordination Scenarios

Linux + Containers: Kernel-Level Coordination
Kubernetes: A Distributed OS for Containers
Hypervisor-Based Systems: VMware vs. KVM
Integrated Reflection and Architectural Insights
Summary & Key Takeaways

©©e© 6 6 6 66

Next Week's Preview
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Linux Kernel Coordination: Containers

The Local Orchestrator

The Linux kernel itself acts as a local coordinator for processes. For con-

tainers, it provides the low-level primitives needed for isolation and resource
management.
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Linux Kernel Coordination: Containers

The Local Orchestrator

The Linux kernel itself acts as a local coordinator for processes. For con-

tainers, it provides the low-level primitives needed for isolation and resource
management.

Core Kernel Primitives for Coordination:

o Namespaces: Provide isolated views of system resources like PIDs, network
interfaces, and the filesystem, ensuring a container cannot see or interact
with others on the same host.

o cgroups: Enforce resource limits, ensuring a container can't consume all the
CPU, memory, or I/O, providing a form of Quality-of-Service (QoS).

o Seccomp and Capabilities: Fine-tune the security, limiting a container’s
ability to make certain system calls or access privileged operations.

These primitives are the foundation of all container engines, including Docker.
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Docker Coordination Overview

Single-Node Management

The Docker Daemon is the primary coordination component on a
single host. It manages the entire lifecycle of a container, from image
management to execution.
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Docker Coordination Overview

Single-Node Management

The Docker Daemon is the primary coordination component on a
single host. It manages the entire lifecycle of a container, from image
management to execution.

Key Coordination Tasks:

o Image Layering: Uses copy-on-write filesystems (like ‘overlayfs‘) to
manage container images efficiently, sharing a read-only base layer
across multiple containers.

o Restart Policies: Automatically restarts containers that fail or exit,
ensuring high availability at the single-node level.

o Event Management: Provides hooks for external tools to respond to
container events (e.g., creation, stop, restart).

It's important to note that the Docker Daemon does not inherently
manage multi-node coordination, which is the role of tools like Kubernetes.
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Kubernetes Case Study

A Distributed OS for Containers

Kubernetes is an orchestrator that acts like a distributed operating

system for a cluster of machines. It abstracts away the individual

nodes and provides a single control plane for managing containerized
workloads.
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Kubernetes Case Study

A Distributed OS for Containers

Kubernetes is an orchestrator that acts like a distributed operating
system for a cluster of machines. It abstracts away the individual
nodes and provides a single control plane for managing containerized
workloads.

Key Components and their Roles:

o Kube-Scheduler: Decides which node a new Pod should run on,
based on resource requirements and other constraints.

o Kubelet: The agent on each node that communicates with the
scheduler and the container runtime to start and manage Pods.

o Controllers: A set of control loops (e.g., ReplicationController) that
ensure the actual state of the cluster matches the desired state.

o etcd: A distributed key-value store that serves as the cluster’s
"source of truth.” It uses the Raft consensus algorithm to ensure

high availability and consistency.
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Kubernetes Coordination Techniques

Scaling OS Concepts

Kubernetes applies classic OS coordination principles to a distributed
environment.
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Kubernetes Coordination Techniques

Scaling OS Concepts

Kubernetes applies classic OS coordination principles to a distributed
environment.

Key Concepts:

o Resource Management: Kubernetes uses ‘cgroups' and
‘namespaces’ under the hood. It defines Pod-level resource ‘requests
(for scheduling) and ‘limits* (for enforcement).

o Scheduling: The scheduler uses a two-phase process (filtering and
ranking) to find the best node for a Pod, extending the concept of a
local process scheduler.

o Self-Healing: Kubernetes' core loop constantly checks the state of
Pods. If a node or container fails, the controller automatically
recreates the Pod on a healthy node, providing robust failure
transparency.
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VMware vSphere — Coordination via Hypervisor

Virtualization-Based Coordination

Unlike the container model, VMware's vSphere coordinates full virtual

machines. The hypervisor is the central point of control, and it’s built
on a bare-metal architecture.
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VMware vSphere — Coordination via Hypervisor

Virtualization-Based Coordination

Unlike the container model, VMware's vSphere coordinates full virtual

machines. The hypervisor is the central point of control, and it’s built
on a bare-metal architecture.

Key Coordination Features:

o vMotion: Allows for the live migration of a running virtual machine
from one physical server to another with zero downtime, providing
seamless migration transparency.

o DRS (Dynamic Resource Scheduling): A feature that continuously
monitors resource usage across a cluster of servers and automatically
migrates VMs to balance the load.

o HA (High Availability): If a physical server fails, the hypervisor
automatically restarts its VMSs on another server in the cluster,
providing failure transparency.
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KVM + libvirt Stack

The Open-Source Alternative

KVM (Kernel-based Virtual Machine) is a Linux kernel feature that
turns the kernel into a Type 1 hypervisor. The ‘libvirt’ toolkit provides
the management layer for KVM.

SDB 0s 137 / 151 s



KVM + libvirt Stack

The Open-Source Alternative

KVM (Kernel-based Virtual Machine) is a Linux kernel feature that
turns the kernel into a Type 1 hypervisor. The ‘libvirt’ toolkit provides
the management layer for KVM.

Roles of the Stack:

o KVM: Provides the core hardware virtualization support, allowing
guest OSes to run with near-native performance.

o QEMU: Emulates the hardware devices (e.g., virtual network cards,
disks) that the guest OS sees.

o libvirt: A daemon that provides a consistent APl to manage VMs,
storage, and networking. It can perform coordination tasks like VM
migration and resource control.

SDB 0s 137 / 151 mn



Summary: Coordination Models Comparison

System

Primary Isolation

Scheduling

Kubernetes

Kernel Namespaces

Distributed Scheduler | Self-

VMware vSphere

Hypervisor Abstraction

DRS Load Balancing | HA |

SDB

0S
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Integrated Reflection

The Big Picture

The principles of operating systems extend from a single machine to
entire data centers.
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Integrated Reflection

The Big Picture

The principles of operating systems extend from a single machine to
entire data centers.

o Resource Management: Single-OS schedulers and memory
managers become distributed schedulers and load balancers in a
cluster.

o Synchronization: Semaphores and locks evolve into consensus
algorithms like Raft and Paxos to manage shared state across many
nodes.

o Fault Tolerance: Simple process restart policies become complex
self-healing and failover mechanisms.

The goal remains the same: provide a consistent, reliable, and efficient
computing environment.
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Key Takeaways

o Modern systems use a combination of kernel primitives and high-level
tools for coordination.

o Kubernetes acts as a distributed OS, managing containerized
workloads using concepts like scheduling and self-healing.

o VMware vSphere provides similar coordination for full VMs,
leveraging the hypervisor as the central control point.

o The fundamental challenges of OS design, such as resource
management and fault tolerance, are directly applicable to distributed
systems.
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Next Week Preview: Final Integration + Capstone Projects

This is our final topic for the course. Next week, we will synthesize
everything we've learned into a comprehensive capstone.

o Course-Wide Integration: Tying together the concepts of processes,
memory, file systems, and distributed coordination.

o Project Synthesis: Discussing how these modules can be combined
into a single, cohesive project.

o Final Q&A: An open forum for questions and review.
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Appendix: Quiz

Conceptual Questions

@ How does Kubernetes' use of ‘etcd’ and the Raft algorithm relate to
the concepts of "distributed consensus” we discussed?

@ What is the main difference between how Kubernetes and VMware's
vSphere achieve high availability (HA)?

® What is the primary role of the ‘libvirt' daemon in a KVM
environment?
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Appendix: Exercises

Design & Analysis
@ Design a simple, multi-node container orchestration system that uses
a centralized coordinator. What are its major drawbacks compared to
a decentralized system like Kubernetes?
@ Research the concept of a "sidecar container” in a Kubernetes Pod.
How does it leverage OS-level coordination to solve a common
problem?
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Appendix: Advanced Topics to Explore

Further Reading

o Service Meshes (Istio, Linkerd): A network layer that handles
communication, security, and observability between services in a
distributed system.

o Kubernetes Operators: A method of packaging, deploying, and
managing a Kubernetes application.

o The ‘containerd’ Project: The core container runtime that provides
the container creation and management functionality used by Docker
and Kubernetes.
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Week 12



Agenda

@ Course-Wide Integration: A Unified View of OS Concepts

@ Revisit of Key OS Themes: Execution, Resources, Coordination
@ Capstone Project Opportunities and Scoping

@ Emerging Trends and Real-World Challenges

® Final Thoughts and Takeaways
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Operating System Model: A Layered Reuvisit

The Unified OS Stack

We've explored the operating system in distinct modules, but in re-

ality, all components are deeply interconnected. This layered model
shows how each part builds upon the last.

’ Execution Management (Processes, Threads, Scheduling) ‘

’ Resource Management (Memory, File Systems, |/0) ‘

’Coordination (Sync, Deadlocks, Virtualization, Distribution)‘

Hardware

SDB 0S 146 / 151 mes



Operating System Model: A Layered Reuvisit

The Unified OS Stack

We've explored the operating system in distinct modules, but in re-

ality, all components are deeply interconnected. This layered model
shows how each part builds upon the last.

’ Execution Management (Processes, Threads, Scheduling) ‘

’ Resource Management (Memory, File Systems, |/0) ‘

’Coordination (Sync, Deadlocks, Virtualization, Distribution)‘

Hardware

The system is a cohesive unit, where changes in one layer have cascading
effects on the others.
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Integrated View of Concepts

Interconnected Themes

The boundaries between our course modules are artificial. Many top-
ics we discussed are intertwined, requiring a holistic understanding.
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Integrated View of Concepts

Interconnected Themes

The boundaries between our course modules are artificial. Many top-
ics we discussed are intertwined, requiring a holistic understanding.

o Execution & Scheduling directly impact Resource Demand (e.g.,
a CPU scheduler must consider memory locality).

o Memory & 1/0 management rely on Coordination mechanisms
(e.g., a file system requires locks to prevent race conditions).

o Synchronization primitives extend naturally to Distributed
Coordination (e.g., a mutex on a single machine becomes a
consensus protocol in a cluster).

o Virtualization is a synthesis of all layers, providing isolated
Execution and Resource management with advanced Coordination
and security.
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Capstone Project Ideas (Conceptual Scopes)

Putting Theory into Practice

Your capstone project is an opportunity to apply a deeper understanding of one or more
of the course modules.
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Capstone Project Ideas (Conceptual Scopes)

Putting Theory into Practice

Your capstone project is an opportunity to apply a deeper understanding of one or more
of the course modules.

Execution & Scheduling Focused:

@ Build a custom CPU scheduler simulator that visually demonstrates how different
algorithms (e.g., Round Robin, CFS) affect process performance.

@ Develop a thread scheduling performance benchmarking tool to compare kernel vs.
user-level threading models.
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Capstone Project Ideas (Conceptual Scopes)

Putting Theory into Practice

Your capstone project is an opportunity to apply a deeper understanding of one or more
of the course modules.

Execution & Scheduling Focused:

@ Build a custom CPU scheduler simulator that visually demonstrates how different
algorithms (e.g., Round Robin, CFS) affect process performance.

@ Develop a thread scheduling performance benchmarking tool to compare kernel vs.
user-level threading models.

Resource & File System Focused:

O Create a page replacement policy visualizer (e.g., LRU, FIFO) to show hit/miss ratios in

real-time.
@ Implement a simple file system simulator with a custom block allocator and inode
management.
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Capstone Project Ideas (Conceptual Scopes)

Putting Theory into Practice

Your capstone project is an opportunity to apply a deeper understanding of one or more
of the course modules.

Execution & Scheduling Focused:

@ Build a custom CPU scheduler simulator that visually demonstrates how different
algorithms (e.g., Round Robin, CFS) affect process performance.

@ Develop a thread scheduling performance benchmarking tool to compare kernel vs.
user-level threading models.

Resource & File System Focused:

O Create a page replacement policy visualizer (e.g., LRU, FIFO) to show hit/miss ratios in
real-time.

@ Implement a simple file system simulator with a custom block allocator and inode
management.

Coordination & Distributed Systems Focused:
@ Build a simplified container runtime that manages ‘namespaces’ and ‘cgroups’.

@ Implement a Paxos or Raft-based replicated key-value store to demonstrate distributed
consensus.
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End-to-End Project Suggestions

Synthesizing Across Modules

These ideas combine multiple course concepts into a single, compre-
hensive project.
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End-to-End Project Suggestions

Synthesizing Across Modules

These ideas combine multiple course concepts into a single, compre-
hensive project.

o Build a Container-Aware Micro-0S:
» Execution: Implement a basic process scheduler for your micro-OS.
» Resources: Create memory sandboxing for each container.
» Coordination: Use ‘namespaces’ and ‘cgroups’ to manage and isolate
container processes and resources.
o Simulate a Distributed Resource Manager:

» Coordination: Implement a leader election algorithm (e.g., Bully).
» Resources: Have the leader manage resource tracking and dynamic

scheduling.
» Execution: Simulate job failures and have the system recover using

the elected leader.
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Open Challenges and Emerging Trends

The Future of OS Design

The field of operating systems is constantly evolving to address new
hardware and security needs.
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Open Challenges and Emerging Trends

The Future of OS Design

The field of operating systems is constantly evolving to address new
hardware and security needs.

o Kernel-Level Security: Using technologies like ‘eBPF' and
‘seccomp’ to create advanced security policies for containers without
sacrificing performance.

o Real-Time Scheduling: Ensuring predictable performance for
time-sensitive applications in multi-tenant environments.

o Confidential Computing: Using hardware-enforced memory
encryption (e.g., Intel TDX, AMD SEV) to protect data even from
the cloud provider or hypervisor.

o Micro-Virtualization: Lightweight VMs like ‘Firecracker’ offer the
speed of containers with the strong isolation of traditional
virtualization, a key technology for serverless computing.
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Final Takeaways

o Operating systems are not a static field; they are living systems that
evolve with the underlying hardware and the applications they
support.

o Coordination is the fundamental challenge of all OS design, from
managing concurrent threads on a single core to a globally distributed
cluster.

o To be an effective systems thinker, you must understand the interplay
between execution, resource management, and coordination.

o The capstone project is your opportunity to synthesize these concepts
and build something impactful.
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