
Operating Systems: Resource Management
Week 1-12

SDB

Autumn 2025

SDB OS 1 / 134

Week 1

Agenda

1 Why Memory Management?

2 Basic Memory Terminology

3 OS Memory Management Goals

4 Address Binding Techniques

5 Memory Protection Mechanisms

6 OS View vs. Process View

7 Summary & Key Takeaways

8 Next Week’s Preview

SDB OS 2 / 134

Why Memory Management Matters
Limited, Fast Resource: Main memory (RAM) is a finite and crucial
resource that must be shared efficiently among multiple processes.

Contiguous Abstraction: A program expects to run in a continuous,
uninterrupted block of memory, even though the physical memory
might be fragmented.

Safety & Security: The OS must ensure that processes can only
access their own memory space, preventing interference and
unauthorized access.

Performance & Stability: Effective memory management minimizes
overhead, prevents crashes, and enables a responsive system.

Analogy

Think of memory as a large library. The OS is the librarian, respon-
sible for organizing the shelves (physical memory) and making sure
each reader (process) can only access their assigned books (memory).

SDB OS 3 / 134

Why Memory Management Matters
Limited, Fast Resource: Main memory (RAM) is a finite and crucial
resource that must be shared efficiently among multiple processes.

Contiguous Abstraction: A program expects to run in a continuous,
uninterrupted block of memory, even though the physical memory
might be fragmented.

Safety & Security: The OS must ensure that processes can only
access their own memory space, preventing interference and
unauthorized access.

Performance & Stability: Effective memory management minimizes
overhead, prevents crashes, and enables a responsive system.

Analogy

Think of memory as a large library. The OS is the librarian, respon-
sible for organizing the shelves (physical memory) and making sure
each reader (process) can only access their assigned books (memory).

SDB OS 3 / 134

Basic Memory Terminology

Logical Address: The address generated by the CPU. This is the
address that a program ”sees” and works with.

Physical Address: The actual address in the main memory (RAM).
This is the real location where data is stored.

Address Space: The set of all logical addresses that a program can
reference.

Memory Management Unit (MMU): A hardware device that
translates logical addresses into physical addresses during program
execution.

Binding: The process of mapping a logical address to a physical
address. This can happen at different times.

SDB OS 4 / 134

Address Binding Techniques

Compile-Time: If the program’s physical address is known in
advance, the compiler can generate absolute code. This is inflexible
as the program cannot be relocated.

Load-Time: If the physical address is not known at compile time, the
compiler generates relocatable code. A linker or loader then binds
the addresses when the program is loaded into memory.

Execution-Time (Run-Time): Addresses are bound during program
execution using a special hardware component, the MMU. This is the
most flexible method, allowing a process to be moved during
execution. This is the foundation of modern memory management.

SDB OS 5 / 134

Memory Protection

Goal: A process must be isolated to prevent it from accessing
another process’s memory or the OS’s memory space.

Base and Limit Registers: A simple hardware mechanism where the
base register holds the starting physical address and the limit
register holds the size of the process’s memory block. The MMU
checks every logical address to ensure it is within this valid range.

Advanced Mechanisms: Modern operating systems use more
complex methods like page tables and access control bits to
enforce protection at a granular level.

SDB OS 6 / 134

Address Translation Diagram

CPU

Program

MMU

Physical Memory (RAM)

Generates

Logical Address Physical Address

SDB OS 7 / 134

OS View vs. Process View of Memory

Process View: Each process sees a dedicated, linear, and contiguous
address space starting from address 0. This is an illusion provided by
the OS.

OS View: The OS sees a collection of scattered and fragmented
memory blocks, each belonging to a different process. The OS’s job is
to manage these non-contiguous physical locations while maintaining
the contiguous illusion for each process.

Key Concept

Modern OSes use paging or segmentation to simulate an isolated,
contiguous address space for each process, even if their physical mem-
ory is fragmented. This is the foundation of virtual memory.

SDB OS 8 / 134

OS View vs. Process View of Memory

Process View: Each process sees a dedicated, linear, and contiguous
address space starting from address 0. This is an illusion provided by
the OS.

OS View: The OS sees a collection of scattered and fragmented
memory blocks, each belonging to a different process. The OS’s job is
to manage these non-contiguous physical locations while maintaining
the contiguous illusion for each process.

Key Concept

Modern OSes use paging or segmentation to simulate an isolated,
contiguous address space for each process, even if their physical mem-
ory is fragmented. This is the foundation of virtual memory.

SDB OS 8 / 134

Key Takeaways

Memory management is essential for multitasking, protection, and
performance.

The MMU is a hardware component that provides the crucial
abstraction of address translation.

The distinction between a logical address (what the CPU sees) and
a physical address (the real location in RAM) is fundamental.

Execution-time binding is the most flexible approach and is used in
all modern operating systems.

SDB OS 9 / 134

Next Week Preview: Allocation Strategies

This week, we covered the fundamental concepts of memory. Next week,
we will dive into the practical implementation details.

Contiguous Memory Allocation: The simplest method, which often
leads to fragmentation.

Paging & Segmentation: Advanced non-contiguous allocation
schemes that overcome the limitations of contiguous allocation.

Fragmentation: We will analyze internal and external fragmentation
and discuss their trade-offs.

SDB OS 10 / 134

Appendix: Quiz, Exercises, and Advanced Topics
Quiz & Exercises

1 What is the primary role of the MMU?

2 Why is execution-time binding considered superior to compile-time
binding for modern OSes?

3 Exercise: A process has a base register value of 2000 and a limit
register of 500. Which of the following logical addresses are valid:
100, 450, 500, 550?

Advanced Topics to Explore

Translation Lookaside Buffer (TLB): A specialized cache for the
MMU to speed up address translation.

Non-Uniform Memory Access (NUMA): Architectures where a
processor’s memory access time depends on the memory’s location.

Memory Swapping and Paging: How the OS manages moving
processes between RAM and secondary storage.

SDB OS 11 / 134

Week 2

Agenda

1 Contiguous Memory Allocation

2 Fragmentation: The Problem

3 Paging: The Solution to External Fragmentation

4 Segmentation: The Logical View

5 Comparison & Hybrid Architectures

SDB OS 12 / 134

Contiguous Memory Allocation
The entire process is loaded into a single, continuous block of
physical memory.
This approach is simple to implement but inflexible.
The OS keeps track of which memory blocks are free and which are
occupied.
Allocation Strategies for finding a free block:

▶ First-Fit: Allocate the first hole that is big enough. Fast but can leave
small, useless fragments.

▶ Best-Fit: Allocate the smallest hole that is big enough. Tries to
minimize wasted space but can be slower and still create many tiny
holes.

▶ Worst-Fit: Allocate the largest hole available. Aims to leave a large
hole behind, which might be useful for a later large process.

Drawback

This method inevitably leads to fragmentation, which we’ll discuss
next.

SDB OS 13 / 134

Fragmentation
Internal Fragmentation: Wasted space inside an allocated memory
block.

▶ Occurs when a process is assigned a block of memory larger than it
needs.

▶ The unused space is unusable by other processes.
▶ This is a common issue with paging.

External Fragmentation: Wasted space between allocated blocks of
memory.

▶ Occurs when there is enough total memory for a new process, but it’s
not contiguous.

▶ This is a major issue with contiguous allocation.
▶ Can be solved with compaction, but this is a very costly operation.

Solution:

Paging and segmentation are designed to solve these fragmentation
problems by not requiring contiguous physical memory.

SDB OS 14 / 134

Paging: The Solution to External Fragmentation

Paging is a non-contiguous memory allocation technique.

The OS divides the physical memory into fixed-size blocks called
frames.

The program’s logical memory is divided into same-sized blocks
called pages.

A page table is used to map a process’s pages to available frames in
physical memory.

Result:

A process’s pages can be scattered throughout physical memory. The
OS can allocate any free frame to any page, eliminating external
fragmentation completely.

SDB OS 15 / 134

Paging: The Solution to External Fragmentation

Paging is a non-contiguous memory allocation technique.

The OS divides the physical memory into fixed-size blocks called
frames.

The program’s logical memory is divided into same-sized blocks
called pages.

A page table is used to map a process’s pages to available frames in
physical memory.

Result:

A process’s pages can be scattered throughout physical memory. The
OS can allocate any free frame to any page, eliminating external
fragmentation completely.

SDB OS 15 / 134

Paging Architecture

Logical Address

Page Table Physical Memory

PTBR MMU

Page Number

Frame Number

Access

Offset

Offset

Note: The

MMU combines the frame number from the page table with the original
offset to form the final physical address.

SDB OS 16 / 134

Paging Hardware Support

Page Table Base Register (PTBR): A dedicated CPU register that
points to the start of the page table for the currently running process.

Translation Lookaside Buffer (TLB): A high-speed hardware cache
for page table entries.

▶ It stores the most recently used logical-to-physical address translations.
▶ A TLB hit (translation found in the cache) results in a very fast

address translation.
▶ A TLB miss (translation not found) requires the OS to perform a full

page table lookup in main memory, which is much slower.

Note

The TLB is critical for making paging practical and performant on
modern systems.

SDB OS 17 / 134

Paging Hardware Support

Page Table Base Register (PTBR): A dedicated CPU register that
points to the start of the page table for the currently running process.

Translation Lookaside Buffer (TLB): A high-speed hardware cache
for page table entries.

▶ It stores the most recently used logical-to-physical address translations.
▶ A TLB hit (translation found in the cache) results in a very fast

address translation.
▶ A TLB miss (translation not found) requires the OS to perform a full

page table lookup in main memory, which is much slower.

Note

The TLB is critical for making paging practical and performant on
modern systems.

SDB OS 17 / 134

Segmentation: The Logical View

Segmentation is a memory management scheme that supports the
programmer’s view of memory.

A program is divided into logical units called segments, which can
vary in size. Common segments include:

▶ Code Segment: The program’s instructions.
▶ Data Segment: Global variables.
▶ Stack Segment: The call stack.
▶ Heap Segment: Dynamically allocated memory.

Each logical address consists of a ‘(segment number, offset)‘.

Note

While segmentation avoids the overhead of fixed-size blocks (like in
paging), it does reintroduce the problem of external fragmentation.

SDB OS 18 / 134

Segmentation: The Logical View

Segmentation is a memory management scheme that supports the
programmer’s view of memory.

A program is divided into logical units called segments, which can
vary in size. Common segments include:

▶ Code Segment: The program’s instructions.
▶ Data Segment: Global variables.
▶ Stack Segment: The call stack.
▶ Heap Segment: Dynamically allocated memory.

Each logical address consists of a ‘(segment number, offset)‘.

Note

While segmentation avoids the overhead of fixed-size blocks (like in
paging), it does reintroduce the problem of external fragmentation.

SDB OS 18 / 134

Paging vs. Segmentation

Feature Paging Segmentation
Division Basis Fixed-size pages Logical units (variable

size)

Fragmentation Internal External

OS View Program as a collection of
pages

Program as a collection of
segments

Hardware Support Page table, PTBR, TLB Segment table,
Base/Limit registers

User View Not visible to the pro-
grammer

Visible to the programmer

SDB OS 19 / 134

Summary & Hybrid Systems

Contiguous allocation is simple but suffers from external
fragmentation.

Paging eliminates external fragmentation by using fixed-size blocks
but can suffer from internal fragmentation.

Segmentation aligns with the programmer’s logical view of memory
but reintroduces external fragmentation.

Most modern OSes use a hybrid approach known as segmented
paging or paged segmentation to combine the benefits of both
schemes.

SDB OS 20 / 134

Next Week Preview: Virtual Memory

Now that we understand paging, we can tackle one of the most powerful
concepts in modern operating systems: virtual memory.

Virtual Memory Concepts: Extending memory space beyond
physical RAM.

Page Faults: What happens when a process tries to access a page
not in main memory.

Demand Paging: A technique for loading pages only when they are
needed.

Locality of Reference: The principle that makes demand paging
work efficiently.

SDB OS 21 / 134

Appendix: Quiz, Exercises, and Advanced Topics
Quiz & Exercises

1 Explain the difference between internal and external fragmentation.
Which is a primary concern for paging, and which for contiguous
allocation?

2 Describe the role of the TLB. Why is it essential for the performance
of a paged system?

3 Exercise: A system uses paging with a 4 KB page size. A process has
a logical address of 6500. What is the page number and the offset?

Advanced Topics to Explore

Multilevel Page Tables: How OSes deal with large page tables to
save memory.

Inverted Page Tables: An alternative approach to page tables used
to reduce memory overhead.

Segmented Paging: A hybrid model that combines the logical view
of segmentation with the non-contiguous benefits of paging.

SDB OS 22 / 134

Week 3

Agenda

1 Virtual Memory Concept

2 Address Translation & Page Faults

3 Page Fault Handling

4 Locality of Reference & Working Set Model

5 TLB Management & Optimization

6 Summary & Key Takeaways

7 Next Week’s Preview

SDB OS 23 / 134

What is Virtual Memory?

Decoupling Memory: Virtual memory is a technique that separates
the logical address space from the physical memory.

Memory Abstraction: It creates the illusion that a process has a
dedicated, large, contiguous block of memory, even if the physical
memory is small and fragmented.

On-Demand Loading: It allows programs to run even if they are not
entirely loaded into physical memory. Only the necessary parts
(pages) are loaded when a process requires them.

OS Role: The operating system uses the hard disk (swap space) as
an extension of RAM to hold pages that aren’t currently in main
memory.

Analogy: Think of a recipe book. You don’t need to have the entire book
open on the counter; you only need to look at the page for the specific
recipe you’re making at that moment. The rest of the book can stay on
the shelf (disk) until you need it.

SDB OS 24 / 134

What is Virtual Memory?

Decoupling Memory: Virtual memory is a technique that separates
the logical address space from the physical memory.

Memory Abstraction: It creates the illusion that a process has a
dedicated, large, contiguous block of memory, even if the physical
memory is small and fragmented.

On-Demand Loading: It allows programs to run even if they are not
entirely loaded into physical memory. Only the necessary parts
(pages) are loaded when a process requires them.

OS Role: The operating system uses the hard disk (swap space) as
an extension of RAM to hold pages that aren’t currently in main
memory.

Analogy: Think of a recipe book. You don’t need to have the entire book
open on the counter; you only need to look at the page for the specific
recipe you’re making at that moment. The rest of the book can stay on
the shelf (disk) until you need it.

SDB OS 24 / 134

Virtual Memory Mapping

Virtual Address Space

Page Table Physical Memory

Disk (Swap Space)

Page Number

Frame Number

Page not in RAM

Translation

Valid Bit, Dirty Bit

Frames 0, 1, 2...

Swap space

SDB OS 25 / 134

Page Fault Handling I

A page fault is a hardware interrupt that occurs when a program tries
to access a page that is marked as not present in physical memory.

The MMU detects this and generates a trap to the operating system
kernel.

The OS takes over to resolve the issue transparently, so the running
process is unaware of the disk I/O.

The Page Fault Handling Steps:

1 Trap to OS: Hardware detects a page fault and traps to the OS.

2 Validate Address: The OS checks the virtual address to ensure it is
valid and authorized.

3 Find Free Frame: The OS finds a free physical frame. If none are
available, it uses a page replacement algorithm to select a victim
frame.

4 Load Page: The OS schedules a disk read to load the required page
into the free frame.

SDB OS 26 / 134

Page Fault Handling II

5 Update Page Table: Once the disk I/O is complete, the OS updates
the page table entry to reflect the new frame number and sets the
”present” bit.

6 Restart Instruction: The OS restarts the instruction that caused the
page fault, allowing the process to continue as if no fault occurred.

SDB OS 27 / 134

Locality of Reference and Working Set

Locality of Reference: A principle that states a program’s memory
accesses tend to cluster in small regions over time.

▶ Temporal Locality: Recently accessed items are likely to be accessed
again soon. (e.g., a loop variable)

▶ Spatial Locality: Items near a recently accessed item are likely to be
accessed soon. (e.g., accessing elements in an array)

The Working Set Model:

The ”working set” is the set of pages that a process is actively using
at a given time.

It is crucial for virtual memory performance. If the OS can keep a
process’s working set in memory, the page fault rate will be low.

Thrashing: Occurs when the working set is larger than the number
of available frames, leading to continuous page faults and very poor
performance.

SDB OS 28 / 134

Locality of Reference and Working Set

Locality of Reference: A principle that states a program’s memory
accesses tend to cluster in small regions over time.

▶ Temporal Locality: Recently accessed items are likely to be accessed
again soon. (e.g., a loop variable)

▶ Spatial Locality: Items near a recently accessed item are likely to be
accessed soon. (e.g., accessing elements in an array)

The Working Set Model:

The ”working set” is the set of pages that a process is actively using
at a given time.

It is crucial for virtual memory performance. If the OS can keep a
process’s working set in memory, the page fault rate will be low.

Thrashing: Occurs when the working set is larger than the number
of available frames, leading to continuous page faults and very poor
performance.

SDB OS 28 / 134

TLB Management & Optimization

TLB Caching: The Translation Lookaside Buffer (TLB) is a small,
fast hardware cache for page table entries. It mitigates the
performance penalty of a two-step memory access in paging.

On TLB Hit: The MMU finds the translation in the TLB. The
physical address is generated instantly, avoiding a memory access.
This is the fastest case.

On TLB Miss: The MMU must consult the page table in main
memory. This is slower, but still much faster than a page fault.

Optimization & Management:

TLB Shootdown: When a page table is modified on one CPU (e.g.,
a process is terminated), other CPUs must be notified to invalidate
their TLB entries for that process to maintain cache coherence.

Address Space Identifiers (ASID): The TLB can use ASIDs to
distinguish between pages from different processes, allowing TLB
entries to persist across context switches.

SDB OS 29 / 134

TLB Management & Optimization

TLB Caching: The Translation Lookaside Buffer (TLB) is a small,
fast hardware cache for page table entries. It mitigates the
performance penalty of a two-step memory access in paging.

On TLB Hit: The MMU finds the translation in the TLB. The
physical address is generated instantly, avoiding a memory access.
This is the fastest case.

On TLB Miss: The MMU must consult the page table in main
memory. This is slower, but still much faster than a page fault.

Optimization & Management:

TLB Shootdown: When a page table is modified on one CPU (e.g.,
a process is terminated), other CPUs must be notified to invalidate
their TLB entries for that process to maintain cache coherence.

Address Space Identifiers (ASID): The TLB can use ASIDs to
distinguish between pages from different processes, allowing TLB
entries to persist across context switches.

SDB OS 29 / 134

Key Takeaways

Virtual Memory provides a powerful abstraction that allows a large
virtual address space with a smaller physical memory.

A page fault is a hardware-supported mechanism that allows the OS
to load pages from disk on-demand, making virtual memory possible.

The concepts of Locality of Reference and the Working Set are
what make virtual memory practical and efficient.

The TLB is a critical hardware cache that minimizes the performance
overhead of address translation, preventing constant memory lookups.

SDB OS 30 / 134

Next Week Preview: Page Replacement Algorithms

The performance of virtual memory hinges on how the OS manages its
limited physical frames. Next week, we will explore this topic in detail.

The Challenge: What to do when a page fault occurs and there are
no free frames.

Page Replacement Algorithms: Strategies for selecting a ”victim”
page to be evicted from memory.

Common Algorithms: We will analyze FIFO, Optimal, and Least
Recently Used (LRU).

Implementation & Performance: We will discuss the performance
trade-offs of these algorithms and explore more practical variants like
the Clock Algorithm.

SDB OS 31 / 134

Appendix: Quiz, Exercises, and Advanced Topics

Quiz & Exercises

1 What is the main difference between a TLB miss and a page fault?

2 Describe a scenario where temporal locality would be high.

3 Exercise: A process’s logical address space is 16 pages, but only 4
frames are available. Explain what happens when the process tries to
access a page that is not in any of the four frames.

Advanced Topics to Explore

Dirty Bit and Copy-on-Write: How the OS handles modified pages
and shared memory.

Memory-Mapped Files: A technique that uses virtual memory to
treat a file on disk as if it were loaded into memory.

Segmented Paging Revisited: How virtual memory works in a
hybrid memory management system.

SDB OS 32 / 134

Week 4

Agenda

1 What is Page Replacement?

2 FIFO, Optimal, and LRU Algorithms

3 The Clock Algorithm (Second-Chance)

4 Belady’s Anomaly

5 Performance Comparison & Trade-offs

6 Summary & Key Takeaways

7 Next Week’s Preview

SDB OS 33 / 134

Page Replacement: The Core Challenge

When a page fault occurs and all available physical frames are
occupied, the OS must choose a ”victim” page to evict.

This evicted page is written to disk (if it was modified) and the new
page is loaded into its frame.

The primary goal of a page replacement algorithm is to minimize
future page faults by making a smart choice for the victim page.

The Challenge:

The OS must make a decision about the future without having perfect
knowledge of which pages will be accessed next. It must rely on
heuristics.

SDB OS 34 / 134

Page Replacement: The Core Challenge

When a page fault occurs and all available physical frames are
occupied, the OS must choose a ”victim” page to evict.

This evicted page is written to disk (if it was modified) and the new
page is loaded into its frame.

The primary goal of a page replacement algorithm is to minimize
future page faults by making a smart choice for the victim page.

The Challenge:

The OS must make a decision about the future without having perfect
knowledge of which pages will be accessed next. It must rely on
heuristics.

SDB OS 34 / 134

First-In, First-Out (FIFO)

Policy: Replace the page that has been in memory for the longest
time.

Implementation: A simple queue or linked list is used to keep track
of the pages in memory. The oldest page is at the head, and new
pages are added to the tail.

Logic: It assumes that pages that have been in memory the longest
are less likely to be used again.

Drawback: FIFO is often a poor choice because it may evict a
heavily used page just because it’s old. This can lead to a high page
fault rate.

Alert:

A key flaw of FIFO is that it is susceptible to Belady’s Anomaly—a
counter-intuitive phenomenon where increasing the number of avail-
able frames can actually lead to more page faults.

SDB OS 35 / 134

First-In, First-Out (FIFO)

Policy: Replace the page that has been in memory for the longest
time.

Implementation: A simple queue or linked list is used to keep track
of the pages in memory. The oldest page is at the head, and new
pages are added to the tail.

Logic: It assumes that pages that have been in memory the longest
are less likely to be used again.

Drawback: FIFO is often a poor choice because it may evict a
heavily used page just because it’s old. This can lead to a high page
fault rate.

Alert:

A key flaw of FIFO is that it is susceptible to Belady’s Anomaly—a
counter-intuitive phenomenon where increasing the number of avail-
able frames can actually lead to more page faults.

SDB OS 35 / 134

Optimal Page Replacement (Theoretical Best)

Policy: Replace the page that will not be used for the longest
period of time in the future.

Implementation: This algorithm is impossible to implement in a real
operating system because it requires perfect knowledge of the future
reference string.

Purpose: It serves as the benchmark for all other page replacement
algorithms. The performance of any practical algorithm is measured
by how close it comes to the optimal algorithm’s page fault rate.

SDB OS 36 / 134

Least Recently Used (LRU)
Policy: Replace the page that has not been used for the longest
period of time.
Heuristic: It operates on the principle of temporal locality: pages
that were used recently will likely be used again soon.
Effectiveness: LRU is a very good approximation of the Optimal
algorithm, as it uses past behavior to predict the future.

Implementation Challenges:

Counter-based: Each page table entry has a counter. On every
memory access, the counter for that page is updated. This requires
costly hardware support.
Stack-based: A stack is maintained where the most recently used
page is at the top. On a page access, the page is moved to the top.
This is also computationally expensive.

Note:

These high overhead costs make a pure LRU implementation expen-
sive for an OS.

SDB OS 37 / 134

Least Recently Used (LRU)
Policy: Replace the page that has not been used for the longest
period of time.
Heuristic: It operates on the principle of temporal locality: pages
that were used recently will likely be used again soon.
Effectiveness: LRU is a very good approximation of the Optimal
algorithm, as it uses past behavior to predict the future.

Implementation Challenges:

Counter-based: Each page table entry has a counter. On every
memory access, the counter for that page is updated. This requires
costly hardware support.
Stack-based: A stack is maintained where the most recently used
page is at the top. On a page access, the page is moved to the top.
This is also computationally expensive.

Note:

These high overhead costs make a pure LRU implementation expen-
sive for an OS.
SDB OS 37 / 134

The Clock Algorithm (Second-Chance)

Policy: A more practical and efficient approximation of LRU. It gives
a page a ”second chance” before evicting it.

Mechanism: Uses a circular list of pages in memory and a ”use” or
”reference” bit for each page. A clock hand (pointer) scans the list.

Operation:
1 When a page needs to be replaced, the hand advances.
2 If the page’s reference bit is 1, the bit is set to 0 and the hand moves

to the next page (the ”second chance”).
3 If the reference bit is already 0, the page is evicted.

Advantage:

The Clock algorithm provides a good balance between performance
and overhead, as it doesn’t require complex data structures or ex-
pensive hardware support.

SDB OS 38 / 134

The Clock Algorithm (Second-Chance)

Policy: A more practical and efficient approximation of LRU. It gives
a page a ”second chance” before evicting it.

Mechanism: Uses a circular list of pages in memory and a ”use” or
”reference” bit for each page. A clock hand (pointer) scans the list.

Operation:
1 When a page needs to be replaced, the hand advances.
2 If the page’s reference bit is 1, the bit is set to 0 and the hand moves

to the next page (the ”second chance”).
3 If the reference bit is already 0, the page is evicted.

Advantage:

The Clock algorithm provides a good balance between performance
and overhead, as it doesn’t require complex data structures or ex-
pensive hardware support.

SDB OS 38 / 134

Belady’s Anomaly

Definition: Belady’s Anomaly is a phenomenon where increasing the
number of available physical frames can lead to an increase in the
number of page faults.

Relevance: This anomaly exists in some algorithms, most famously
FIFO, but does not occur in LRU or Optimal algorithms. This
highlights a key problem with a replacement policy that ignores a
page’s recent usage.

Example Trace (FIFO):

Reference String = 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Frames Memory State Page Faults
3 [1, 2, 3], [4, 2, 3], [4, 5, 3]... 9
4 [1, 2, 3, 4], [5, 2, 3, 4], [5, 1, 3, 4]... 10

As the number of frames increases from 3 to 4, the number of page faults
increases from 9 to 10.

SDB OS 39 / 134

Belady’s Anomaly

Definition: Belady’s Anomaly is a phenomenon where increasing the
number of available physical frames can lead to an increase in the
number of page faults.

Relevance: This anomaly exists in some algorithms, most famously
FIFO, but does not occur in LRU or Optimal algorithms. This
highlights a key problem with a replacement policy that ignores a
page’s recent usage.

Example Trace (FIFO):

Reference String = 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Frames Memory State Page Faults
3 [1, 2, 3], [4, 2, 3], [4, 5, 3]... 9
4 [1, 2, 3, 4], [5, 2, 3, 4], [5, 1, 3, 4]... 10

As the number of frames increases from 3 to 4, the number of page faults
increases from 9 to 10.

SDB OS 39 / 134

Comparison & Trade-offs

Algorithm Fault Rate Implementation Overhead Anomaly Risk
Optimal Lowest Impossible N/A No
LRU Low Complex High No
FIFO High Very Simple Low Yes
Clock Medium/Low Simple Low No

Conclusion:

The Clock algorithm is often a preferred choice for real-world OSes
because it offers a very good compromise between performance and
implementation cost.

SDB OS 40 / 134

Key Takeaways

A page replacement algorithm is triggered when a page fault
occurs and a ”victim” page must be chosen for eviction.

The Optimal algorithm is the theoretical best, but is impossible to
implement.

LRU is a highly effective, but expensive, approximation of Optimal.

The Clock algorithm is a simple and efficient approximation of LRU
that is widely used in real systems.

Belady’s Anomaly is a key flaw of algorithms like FIFO,
demonstrating that more memory doesn’t always lead to better
performance.

SDB OS 41 / 134

Next Week Preview: Demand Paging and Thrashing

Building on our understanding of virtual memory and page replacement,
next week we will explore the practicalities of these systems.

Demand Paging: The concept of lazy page loading and how it
improves system efficiency.

Thrashing: A pathological state where a system spends more time
swapping pages than executing instructions.

Working Set Model: A closer look at how the OS manages a
process’s active pages to prevent thrashing.

Page Fault Frequency Control: Dynamic strategies to adjust the
number of frames a process has to prevent thrashing.

SDB OS 42 / 134

Appendix: Quiz, Exercises, and Advanced Topics
Quiz & Exercises

1 Explain why the Optimal page replacement algorithm is impractical
for real-world operating systems.

2 A system has 4 frames. Using the reference string ‘4, 3, 2, 1, 4, 3, 5,
4, 3, 2, 1, 5‘, determine the number of page faults for both the FIFO
and LRU algorithms.

3 Describe how a real OS might implement an efficient approximation
of LRU without using counters or a stack.

Advanced Topics to Explore

Second-Chance and Enhanced Second-Chance Algorithms: More
detailed versions of the Clock algorithm that also consider the ”dirty
bit.”

Not Recently Used (NRU) Algorithm: A simple and efficient
algorithm that uses reference and dirty bits.

Aging Algorithm: A more sophisticated variant that keeps track of
recent usage by shifting bits in a counter.
SDB OS 43 / 134

Week 5

Agenda

1 Demand Paging Concept

2 The Valid/Invalid Bit Mechanism

3 Performance Impact: Effective Access Time

4 Thrashing: The Problem of Over-commitment

5 Thrashing Prevention Techniques

6 Summary & Key Takeaways

7 Next Week’s Preview

SDB OS 44 / 134

What is Demand Paging?

Lazy Loading: Demand paging is a strategy where a page is loaded
into main memory only when it is actually needed (i.e., when a
process attempts to access it).

Partial Execution: It allows a process to begin execution even if only
a small subset of its pages are in physical memory. All other pages
remain on disk.

Benefits: Reduces the memory required for each process, allows for
faster process startup times, and supports a higher degree of
multiprogramming.

Trade-off

While it saves memory, the first access to a page that isn’t in RAM
will incur a significant performance penalty due to the page fault.

SDB OS 45 / 134

What is Demand Paging?

Lazy Loading: Demand paging is a strategy where a page is loaded
into main memory only when it is actually needed (i.e., when a
process attempts to access it).

Partial Execution: It allows a process to begin execution even if only
a small subset of its pages are in physical memory. All other pages
remain on disk.

Benefits: Reduces the memory required for each process, allows for
faster process startup times, and supports a higher degree of
multiprogramming.

Trade-off

While it saves memory, the first access to a page that isn’t in RAM
will incur a significant performance penalty due to the page fault.

SDB OS 45 / 134

The Valid/Invalid Bit Mechanism

Each entry in a process’s page table has a dedicated valid-invalid bit.

Valid Bit (= 1): The page is currently in physical memory. The
address translation can proceed normally.

Invalid Bit (= 0): The page is not in physical memory. Accessing
this page will trigger a page fault trap to the OS.

The bit can also be used to indicate an illegal address space. For
example, a page beyond the logical address space of a program would
also be marked as invalid.

Mechanism

This single bit is the hardware-level mechanism that supports demand
paging. It tells the MMU whether a translation is possible or if a page
fault is required.

SDB OS 46 / 134

The Valid/Invalid Bit Mechanism

Each entry in a process’s page table has a dedicated valid-invalid bit.

Valid Bit (= 1): The page is currently in physical memory. The
address translation can proceed normally.

Invalid Bit (= 0): The page is not in physical memory. Accessing
this page will trigger a page fault trap to the OS.

The bit can also be used to indicate an illegal address space. For
example, a page beyond the logical address space of a program would
also be marked as invalid.

Mechanism

This single bit is the hardware-level mechanism that supports demand
paging. It tells the MMU whether a translation is possible or if a page
fault is required.

SDB OS 46 / 134

Effective Access Time (EAT)
The performance of a system using demand paging is not just about the
speed of memory; it’s heavily influenced by the page fault rate. We use
Effective Access Time (EAT) to quantify this.

EAT = (1− p)×Memory Access Time + p × Page Fault Service Time

where p is the page fault rate (a value between 0 and 1).

Example:

Memory Access Time = 100 ns

Average Page Fault Service Time = 10 ms (10, 000, 000 ns)

Even with a very low page fault rate of p = 0.001 (1 in 1000
accesses), the EAT is calculated as:

EAT = (0.999× 100 ns) + (0.001× 10, 000, 000 ns) ≈ 10, 099 ns

This means a tiny page fault rate causes a performance degradation
of over 100 times. This highlights why keeping the page fault rate
low is paramount.

SDB OS 47 / 134

Effective Access Time (EAT)
The performance of a system using demand paging is not just about the
speed of memory; it’s heavily influenced by the page fault rate. We use
Effective Access Time (EAT) to quantify this.

EAT = (1− p)×Memory Access Time + p × Page Fault Service Time

where p is the page fault rate (a value between 0 and 1).
Example:

Memory Access Time = 100 ns

Average Page Fault Service Time = 10 ms (10, 000, 000 ns)

Even with a very low page fault rate of p = 0.001 (1 in 1000
accesses), the EAT is calculated as:

EAT = (0.999× 100 ns) + (0.001× 10, 000, 000 ns) ≈ 10, 099 ns

This means a tiny page fault rate causes a performance degradation
of over 100 times. This highlights why keeping the page fault rate
low is paramount.

SDB OS 47 / 134

What is Thrashing?

Definition: Thrashing is a state where the system is spending more
time servicing page faults and swapping pages in and out of memory
than it is doing useful work (executing instructions).

Cause: It occurs when the total working sets of all active processes
exceed the total amount of available physical memory.

Symptoms: The CPU utilization drops significantly, as it is
constantly waiting for disk I/O, while the page fault rate and disk
activity are extremely high.

Analogy:

Imagine a group of people trying to work on a single small desk.
They constantly have to put their current work away in a file cabinet
and retrieve new work, causing more time to be spent on shuffling
paper than on the actual tasks.

SDB OS 48 / 134

What is Thrashing?

Definition: Thrashing is a state where the system is spending more
time servicing page faults and swapping pages in and out of memory
than it is doing useful work (executing instructions).

Cause: It occurs when the total working sets of all active processes
exceed the total amount of available physical memory.

Symptoms: The CPU utilization drops significantly, as it is
constantly waiting for disk I/O, while the page fault rate and disk
activity are extremely high.

Analogy:

Imagine a group of people trying to work on a single small desk.
They constantly have to put their current work away in a file cabinet
and retrieve new work, causing more time to be spent on shuffling
paper than on the actual tasks.

SDB OS 48 / 134

Thrashing Prevention Techniques
The goal is to provide enough memory to each process to hold its working
set, thus preventing excessive page faults.

Working-Set Model:
▶ The OS monitors a process’s working set—the set of pages it has

recently referenced.
▶ The OS ensures that each process has enough physical frames to hold

its entire working set.
▶ If the sum of all working sets exceeds available memory, the OS may

suspend one or more processes to free up frames and prevent
thrashing.

Page Fault Frequency (PFF) Control:
▶ The OS sets a desired upper and lower bound on the page fault rate.
▶ If a process’s fault rate is too high (above the upper bound), the OS

assumes it needs more frames and allocates one.
▶ If a process’s fault rate is too low (below the lower bound), the OS

may take away one of its frames.
▶ This is an adaptive approach that dynamically adjusts memory

allocation to match demand.

SDB OS 49 / 134

Key Takeaways

Demand Paging provides a powerful abstraction but introduces the
risk of page faults.

The Valid/Invalid Bit is the hardware component that makes
demand paging possible.

The performance of a demand-paged system is incredibly sensitive to
the page fault rate, as seen in the Effective Access Time (EAT)
formula.

Thrashing is a dangerous state where system performance collapses
due to excessive page swapping.

The Working-Set Model and PFF Control are key strategies used
by the OS to prevent thrashing and maintain system stability.

SDB OS 50 / 134

Next Week Preview: File System Architecture

So far, we’ve focused on memory management. Next week, we begin our
exploration of file systems—how data is stored and organized on secondary
storage.

File System Design Goals: Reliability, performance, and security.

Core Components: Superblocks, inodes, and directories.

File Allocation Methods: How files are laid out on the disk (e.g.,
contiguous, linked, indexed).

SDB OS 51 / 134

Appendix: Quiz, Exercises, and Advanced Topics
Quiz & Exercises

1 Why is a page fault service time so much longer than a typical
memory access time?

2 Explain how the Working Set Model can be used to prevent
thrashing.

3 Exercise: A computer has a memory access time of 50 ns. The
average page fault service time is 5 ms. What is the maximum
acceptable page fault rate to ensure that the Effective Access Time
does not exceed 100 ns?

Advanced Topics to Explore

Copy-on-Write (CoW): A technique that uses demand paging to
optimize the ‘fork()‘ system call.
Prepaging: A strategy to proactively load pages that a process will
likely need in the future.
Shared Pages: How demand paging facilitates sharing code
segments (like libraries) among multiple processes.
SDB OS 52 / 134

Week 6

Agenda

1 File System Objectives and Abstractions

2 File Attributes and Metadata

3 File Control Blocks (FCBs) and Inodes

4 Directory Structures

5 File System Layout on Storage

6 Summary & Key Takeaways

7 Next Week’s Preview

SDB OS 53 / 134

What is a File System?

A file system is the component of the operating system that
manages and organizes files on a storage device (like a disk or SSD).

It provides a logical abstraction, allowing users and applications to
interact with data using easy-to-remember names and a hierarchical
structure, rather than raw physical addresses.

Key responsibilities include:
▶ Persistence: Ensuring data survives a system reboot.
▶ Access Control: Managing permissions and security.
▶ Structure: Organizing files in a logical hierarchy.

Analogy:

Think of a file system as the librarian for your hard drive. It main-
tains the card catalog (directory structure), tracks each book’s details
(metadata), and knows exactly where each book is located on the
shelves (physical disk blocks).

SDB OS 54 / 134

What is a File System?

A file system is the component of the operating system that
manages and organizes files on a storage device (like a disk or SSD).

It provides a logical abstraction, allowing users and applications to
interact with data using easy-to-remember names and a hierarchical
structure, rather than raw physical addresses.

Key responsibilities include:
▶ Persistence: Ensuring data survives a system reboot.
▶ Access Control: Managing permissions and security.
▶ Structure: Organizing files in a logical hierarchy.

Analogy:

Think of a file system as the librarian for your hard drive. It main-
tains the card catalog (directory structure), tracks each book’s details
(metadata), and knows exactly where each book is located on the
shelves (physical disk blocks).

SDB OS 54 / 134

File Attributes and Metadata

File Attributes are the descriptive properties of a file, separate from
its actual content. This information is a file’s metadata.

Key attributes typically include:
▶ Name: The symbolic name for the file.
▶ Type: The file’s format (e.g., text, executable, image).
▶ Size: The number of bytes in the file.
▶ Timestamps: Dates of creation, last modification, and last access.
▶ Permissions: Read, Write, and Execute bits for the owner, group, and

others.
▶ Owner and Group Information: The user and group IDs associated

with the file.

ssignificance:

This metadata allows the OS to manage and protect files without
needing to read their content.

SDB OS 55 / 134

File Attributes and Metadata

File Attributes are the descriptive properties of a file, separate from
its actual content. This information is a file’s metadata.

Key attributes typically include:
▶ Name: The symbolic name for the file.
▶ Type: The file’s format (e.g., text, executable, image).
▶ Size: The number of bytes in the file.
▶ Timestamps: Dates of creation, last modification, and last access.
▶ Permissions: Read, Write, and Execute bits for the owner, group, and

others.
▶ Owner and Group Information: The user and group IDs associated

with the file.

ssignificance:

This metadata allows the OS to manage and protect files without
needing to read their content.

SDB OS 55 / 134

File Control Block (FCB) & Inodes

A File Control Block (FCB) is a data structure used by the OS to
store the metadata for a single file. Every file has an FCB.

In UNIX-like systems, the FCB is a special structure called an inode
(index node).

An inode contains:
▶ File Attributes: All the metadata we just discussed (size, permissions,

timestamps, owner, etc.).
▶ Disk Block Pointers: A list of pointers to the physical data blocks on

the disk where the file’s content is stored.

Key Concept

A file’s name is stored in a directory entry, while all other metadata
and the pointers to its data are stored in its inode. This separation
is crucial for flexible file systems.

SDB OS 56 / 134

File Control Block (FCB) & Inodes

A File Control Block (FCB) is a data structure used by the OS to
store the metadata for a single file. Every file has an FCB.

In UNIX-like systems, the FCB is a special structure called an inode
(index node).

An inode contains:
▶ File Attributes: All the metadata we just discussed (size, permissions,

timestamps, owner, etc.).
▶ Disk Block Pointers: A list of pointers to the physical data blocks on

the disk where the file’s content is stored.

Key Concept

A file’s name is stored in a directory entry, while all other metadata
and the pointers to its data are stored in its inode. This separation
is crucial for flexible file systems.

SDB OS 56 / 134

Directory Structures

A directory is a file that contains a list of other files and/or
directories. It provides a mapping between a file’s name and its
FCB/inode number.

Common directory structures include:
▶ Single-Level Directory: All files are in a single, simple directory. Not

scalable.
▶ Two-Level Directory: A root directory contains user directories, and

each user has their own personal directory.
▶ Tree-Structured Directory: The most common structure, allowing for

a hierarchical organization of files and directories (e.g., Linux,
Windows).

▶ Acyclic Graph Directory: A generalization of the tree structure that
allows files to be shared via links (shortcuts/symlinks) without creating
loops.

SDB OS 57 / 134

File System Layout on Disk

File System Layout (Example)

Boot Block Superblock Inode List Data Blocks

Partition

Boot Block: Contains the bootloader program to start the OS.

Superblock: Stores critical metadata about the entire file system
(file system type, size, block counts, location of the inode list, etc.).

Inode List: A contiguous block on disk that stores all the inodes for
every file on the partition.

Data Blocks: The main area where the actual content of files is
stored.

SDB OS 58 / 134

Key Takeaways

A file system is a fundamental OS component that provides a logical
abstraction over raw disk storage.

File metadata is stored in a data structure called a File Control
Block (FCB), or an inode in UNIX-like systems.

The directory structure maps human-readable names to
FCBs/inodes, enabling a hierarchical file organization.

The physical layout on disk is carefully structured with a superblock,
inode list, and data blocks to ensure a file system is self-contained
and manageable.

SDB OS 59 / 134

Next Week Preview: File Allocation and Free Space
Management

With our understanding of file system architecture, we can now address a
critical question: how does the OS store the content of a file on the disk?

File Allocation Methods: We will examine the three main strategies
for storing files on disk:

▶ Contiguous Allocation
▶ Linked Allocation
▶ Indexed Allocation

Free Space Management: We will also look at how the file system
keeps track of which blocks are free and available for new files.

SDB OS 60 / 134

Appendix: Quiz, Exercises, and Advanced Topics
Quiz & Exercises

1 What is the primary advantage of storing a file’s name in a directory
entry and its metadata in a separate inode?

2 In a UNIX-like file system, where would you find the information
about a file’s size and permissions?

3 Exercise: Draw a simple directory tree showing the ‘/usr‘, ‘/usr/bin‘,
and ‘/etc‘ directories, and a file named ‘passwd‘ in ‘/etc‘. Show the
links between them.

Advanced Topics to Explore

Journaling File Systems: A method for preventing data corruption
in the event of a system crash.

Virtual File System (VFS): A software layer in the kernel that
provides a uniform interface to different file system types.

RAID (Redundant Array of Independent Disks): Techniques for
improving performance and reliability of disk systems.

SDB OS 61 / 134

Week 7

Agenda

1 The File Allocation Problem

2 Contiguous, Linked, and Indexed Allocation

3 Free Space Management Techniques

4 Block Size and Performance Trade-offs

5 Comparative Analysis

6 Summary & Key Takeaways

7 Next Week’s Preview

SDB OS 62 / 134

File Allocation: The Problem

Objective: The file system must efficiently map the logical structure
of a file onto the physical storage blocks on a disk.

Key Challenges:
▶ Storage Utilization: Minimizing wasted space (fragmentation).
▶ Access Performance: Enabling fast sequential and random access to

file data.
▶ Flexibility: Allowing files to grow or shrink dynamically.
▶ Metadata Overhead: Keeping track of block pointers without

excessive overhead.

Each of the primary allocation methods we will discuss represents a
different trade-off in solving these challenges.

SDB OS 63 / 134

File Allocation: The Problem

Objective: The file system must efficiently map the logical structure
of a file onto the physical storage blocks on a disk.

Key Challenges:
▶ Storage Utilization: Minimizing wasted space (fragmentation).
▶ Access Performance: Enabling fast sequential and random access to

file data.
▶ Flexibility: Allowing files to grow or shrink dynamically.
▶ Metadata Overhead: Keeping track of block pointers without

excessive overhead.

Each of the primary allocation methods we will discuss represents a
different trade-off in solving these challenges.

SDB OS 63 / 134

Contiguous Allocation

Principle: Each file is stored in a single, contiguous set of blocks
on the disk.

How it works: A directory entry only needs to store the starting
block address and the length of the file.

Performance:
▶ Excellent Sequential Access: Reading a file is a single, fast I/O

operation.
▶ Excellent Random Access: The address of any block can be

calculated instantly (‘start block + offset‘).

Drawbacks

External Fragmentation: As files are created and deleted, the
free space becomes a collection of non-contiguous fragments.

Inflexibility: The file size must be known at creation time,
and files cannot easily grow or shrink.

SDB OS 64 / 134

Contiguous Allocation

Principle: Each file is stored in a single, contiguous set of blocks
on the disk.

How it works: A directory entry only needs to store the starting
block address and the length of the file.

Performance:
▶ Excellent Sequential Access: Reading a file is a single, fast I/O

operation.
▶ Excellent Random Access: The address of any block can be

calculated instantly (‘start block + offset‘).

Drawbacks

External Fragmentation: As files are created and deleted, the
free space becomes a collection of non-contiguous fragments.

Inflexibility: The file size must be known at creation time,
and files cannot easily grow or shrink.

SDB OS 64 / 134

Linked Allocation

Principle: Each file is a linked list of disk blocks. The blocks can
be scattered anywhere on the disk.

How it works: Each block contains a pointer to the next block in the
file. A directory entry only stores the starting block and the last block
address.

Benefits:
▶ No External Fragmentation: Any free block can be used.
▶ Flexible File Size: Files can grow dynamically by simply linking a new

block to the end.

Drawbacks

Poor Random Access: To find a specific block, the OS must
traverse the linked list from the beginning.

Metadata Overhead: A portion of each block is dedicated to
storing the pointer, reducing the space available for data.

SDB OS 65 / 134

Linked Allocation

Principle: Each file is a linked list of disk blocks. The blocks can
be scattered anywhere on the disk.

How it works: Each block contains a pointer to the next block in the
file. A directory entry only stores the starting block and the last block
address.

Benefits:
▶ No External Fragmentation: Any free block can be used.
▶ Flexible File Size: Files can grow dynamically by simply linking a new

block to the end.

Drawbacks

Poor Random Access: To find a specific block, the OS must
traverse the linked list from the beginning.

Metadata Overhead: A portion of each block is dedicated to
storing the pointer, reducing the space available for data.

SDB OS 65 / 134

Indexed Allocation

Principle: All block pointers for a file are collected into a single
location called an index block.

How it works: The directory entry points to the index block. To
access any data block, the OS first reads the index block and then
follows the appropriate pointer.

Benefits:
▶ Excellent Random Access: Any block can be accessed directly from

the index block.
▶ No External Fragmentation: Blocks can be scattered anywhere.

Drawbacks

Overhead of the index block itself.

The file size is limited by the size of the index block. Modern
systems use multi-level indexing to solve this.

SDB OS 66 / 134

Indexed Allocation

Principle: All block pointers for a file are collected into a single
location called an index block.

How it works: The directory entry points to the index block. To
access any data block, the OS first reads the index block and then
follows the appropriate pointer.

Benefits:
▶ Excellent Random Access: Any block can be accessed directly from

the index block.
▶ No External Fragmentation: Blocks can be scattered anywhere.

Drawbacks

Overhead of the index block itself.

The file size is limited by the size of the index block. Modern
systems use multi-level indexing to solve this.

SDB OS 66 / 134

Indexed Allocation Diagram

Index Block
(Pointers)

• Ptr to Block 1

• Ptr to Block 2

• Ptr to Block 3

• Ptr to Block 4

Block 1

Block 2

Block 3

Block 4

Note:

The index block stores all the pointers to the file’s data blocks, en-
abling direct access to any block.

SDB OS 67 / 134

Free Space Management

The file system must keep a record of all unallocated disk blocks to be
able to create new files.

Bitmap (Bit Vector):
▶ A bit array where each bit represents a disk block.
▶ ‘1‘ = allocated, ‘0‘ = free.
▶ Fast to find a free block but requires a large contiguous chunk of

memory.

Linked List:
▶ All free blocks are linked together in a list.
▶ Simple to implement, but finding a specific number of free blocks can

be slow.

Grouping and Counting:
▶ Store the addresses of free blocks in a group. When the group is

exhausted, the last block in the group points to the next group of free
blocks.

▶ A counter can also be used to store a range of contiguous free blocks.

SDB OS 68 / 134

Block Size and Performance Trade-offs

The choice of block size is a crucial design decision for a file system.

Larger Block Size:
▶ Advantages: Fewer disk accesses and less metadata overhead for large

files. Better performance for sequential access.
▶ Disadvantages: More internal fragmentation, as the last block of a

file is often only partially used.

Smaller Block Size:
▶ Advantages: Less internal fragmentation, saving space for smaller

files.
▶ Disadvantages: More disk accesses for large files and higher overhead

for storing pointers (e.g., a larger inode table).

The ideal block size is a balance between these factors, typically chosen to
be between 4 KB and 16 KB for modern systems, to handle both small
and large files efficiently.

SDB OS 69 / 134

Block Size and Performance Trade-offs

The choice of block size is a crucial design decision for a file system.

Larger Block Size:
▶ Advantages: Fewer disk accesses and less metadata overhead for large

files. Better performance for sequential access.
▶ Disadvantages: More internal fragmentation, as the last block of a

file is often only partially used.

Smaller Block Size:
▶ Advantages: Less internal fragmentation, saving space for smaller

files.
▶ Disadvantages: More disk accesses for large files and higher overhead

for storing pointers (e.g., a larger inode table).

The ideal block size is a balance between these factors, typically chosen to
be between 4 KB and 16 KB for modern systems, to handle both small
and large files efficiently.

SDB OS 69 / 134

File Allocation Strategy Comparison

Method Sequential Access Random Access Fragmentation Flexibility
Contiguous Excellent Excellent External Poor

Linked Fair Poor None Excellent

Indexed Good Excellent None Excellent

SDB OS 70 / 134

Key Takeaways

File Allocation is the process of mapping a file to physical disk
blocks, and each method involves a different set of trade-offs.

Contiguous allocation is fast but suffers from external fragmentation
and is inflexible.

Linked allocation is flexible but slow for random access.

Indexed allocation, used in most modern file systems, provides a
balance of performance, flexibility, and good random access.

Free Space Management is a core file system task, often handled
with a bitmap or a linked list of free blocks.

SDB OS 71 / 134

Next Week Preview: Disk Scheduling and I/O Performance

Now that we understand how files are stored, we will explore how the OS
optimizes the physical movement of the disk’s read/write head.

Disk Structure: Platters, tracks, and sectors.

Disk Access Delay: The components of latency (seek time,
rotational latency).

Disk Scheduling Algorithms: FCFS, SSTF, SCAN, and LOOK.

RAID Basics: An introduction to using multiple disks to improve
performance and reliability.

SDB OS 72 / 134

Appendix: Quiz, Exercises, and Advanced Topics
Quiz & Exercises

1 A file system uses a bitmap for free space management. The disk has
1000 blocks. How much memory is needed to store the bitmap?

2 For which type of file (e.g., a large video file vs. a small configuration
file) would contiguous allocation provide the biggest performance
benefit?

3 Exercise: A file system with 1KB blocks needs to store a 10MB file
using indexed allocation. How many index blocks would be needed if
each index block can hold 256 block pointers?

Advanced Topics to Explore

FAT (File Allocation Table): A classic example of linked allocation
with a separate table.

Extents-based Allocation: A modern approach that combines
aspects of both contiguous and indexed allocation to improve
performance.

B-tree Based File Allocation: Advanced file systems (like XFS) use
B-trees for efficient storage and retrieval of file block pointers.
SDB OS 73 / 134

Week 8

Agenda

1 Disk Structure & Access Latency

2 I/O Bottlenecks & Queueing

3 Disk Scheduling Algorithms

4 Performance Comparison & Trade-offs

5 Choosing a Scheduling Strategy

6 Summary & Key Takeaways

7 Next Week’s Preview

SDB OS 74 / 134

Disk Structure & Access Breakdown
Hard Disk Drives (HDDs) are electro-mechanical devices that store
data on rapidly rotating circular platters.

Data is organized into concentric circles called tracks, which are
divided into sectors. A read/write head moves across the platters.

Disk access time is composed of three main parts:
▶ Seek Time: The time it takes for the disk arm to move the read/write

head to the correct track. This is typically the dominant component
of access time.

▶ Rotational Latency: The time it takes for the desired sector to rotate
under the read/write head.

▶ Transfer Time: The time required to actually transfer the data from
the disk to memory.

Optimization Focus

Because seek time is the largest contributor to latency, disk schedul-
ing algorithms primarily aim to minimize head movement.

SDB OS 75 / 134

Disk Structure & Access Breakdown
Hard Disk Drives (HDDs) are electro-mechanical devices that store
data on rapidly rotating circular platters.

Data is organized into concentric circles called tracks, which are
divided into sectors. A read/write head moves across the platters.

Disk access time is composed of three main parts:
▶ Seek Time: The time it takes for the disk arm to move the read/write

head to the correct track. This is typically the dominant component
of access time.

▶ Rotational Latency: The time it takes for the desired sector to rotate
under the read/write head.

▶ Transfer Time: The time required to actually transfer the data from
the disk to memory.

Optimization Focus

Because seek time is the largest contributor to latency, disk schedul-
ing algorithms primarily aim to minimize head movement.

SDB OS 75 / 134

I/O Bottlenecks & Queueing

Due to the mechanical nature of HDDs, disk I/O operations are
orders of magnitude slower than CPU operations.

When multiple processes request disk I/O concurrently, these requests
accumulate in an I/O queue (managed by the OS or the disk
controller).

If these requests are serviced in an unoptimized order, the disk head
can move back and forth erratically (often called ”head thrashing”),
drastically increasing total seek time and reducing overall disk
throughput.

Solution

Solution: Disk scheduling algorithms reorder the pending I/O
requests in the queue to minimize the total head movement and
improve response time.

SDB OS 76 / 134

I/O Bottlenecks & Queueing

Due to the mechanical nature of HDDs, disk I/O operations are
orders of magnitude slower than CPU operations.

When multiple processes request disk I/O concurrently, these requests
accumulate in an I/O queue (managed by the OS or the disk
controller).

If these requests are serviced in an unoptimized order, the disk head
can move back and forth erratically (often called ”head thrashing”),
drastically increasing total seek time and reducing overall disk
throughput.

Solution

Solution: Disk scheduling algorithms reorder the pending I/O
requests in the queue to minimize the total head movement and
improve response time.

SDB OS 76 / 134

First-Come, First-Served (FCFS) Scheduling
Principle: Requests are serviced strictly in the order they arrive in the
queue.

Pros:
▶ Simple to implement.
▶ Inherently fair (no starvation).

Cons: Very inefficient for disk performance if requests are scattered
across the disk, leading to excessive head movement.

Example:

Current head position: 53

Request queue: [98, 183, 37, 122, 14, 124, 65, 67] (Cylinder
numbers)

Sequence of movements: 53 → 98 → 183 → 37 → 122 → 14 →
124 → 65 → 67

Total Head Movement: (98− 53) + (183− 98) + |37− 183|+
|122− 37|+ |14− 122|+ |124− 14|+ |65− 124|+ |67− 65|
= 45 + 85 + 146 + 85 + 108 + 110 + 59 + 2 = 640 cylinders

SDB OS 77 / 134

First-Come, First-Served (FCFS) Scheduling
Principle: Requests are serviced strictly in the order they arrive in the
queue.

Pros:
▶ Simple to implement.
▶ Inherently fair (no starvation).

Cons: Very inefficient for disk performance if requests are scattered
across the disk, leading to excessive head movement.

Example:

Current head position: 53

Request queue: [98, 183, 37, 122, 14, 124, 65, 67] (Cylinder
numbers)

Sequence of movements: 53 → 98 → 183 → 37 → 122 → 14 →
124 → 65 → 67

Total Head Movement: (98− 53) + (183− 98) + |37− 183|+
|122− 37|+ |14− 122|+ |124− 14|+ |65− 124|+ |67− 65|
= 45 + 85 + 146 + 85 + 108 + 110 + 59 + 2 = 640 cylinders

SDB OS 77 / 134

Shortest Seek Time First (SSTF)
Principle: Service the request that is closest to the current head
position next.
Pros: Significantly reduces the average seek time and increases disk
throughput compared to FCFS.
Cons:

▶ Can lead to starvation for requests that are far from the frequently
accessed areas.

▶ Requires the OS to constantly know the next closest request, adding
minor overhead.

Example (using same queue):

Current head: 53
Queue: [98, 183, 37, 122, 14, 124, 65, 67]

Sequence (SSTF): 53 → 65 → 67 → 37 → 14 → 98 → 122 → 124
→ 183
Total Head Movement: (65− 53) + (67− 65) + |37− 67|+ |14−
37|+ |98− 14|+ |122− 98|+ |124− 122|+ |183− 124|
= 12 + 2 + 30 + 23 + 84 + 24 + 2 + 59 = 236 cylinders (Much lower
than FCFS!)

SDB OS 78 / 134

Shortest Seek Time First (SSTF)
Principle: Service the request that is closest to the current head
position next.
Pros: Significantly reduces the average seek time and increases disk
throughput compared to FCFS.
Cons:

▶ Can lead to starvation for requests that are far from the frequently
accessed areas.

▶ Requires the OS to constantly know the next closest request, adding
minor overhead.

Example (using same queue):

Current head: 53
Queue: [98, 183, 37, 122, 14, 124, 65, 67]

Sequence (SSTF): 53 → 65 → 67 → 37 → 14 → 98 → 122 → 124
→ 183
Total Head Movement: (65− 53) + (67− 65) + |37− 67|+ |14−
37|+ |98− 14|+ |122− 98|+ |124− 122|+ |183− 124|
= 12 + 2 + 30 + 23 + 84 + 24 + 2 + 59 = 236 cylinders (Much lower
than FCFS!)
SDB OS 78 / 134

SCAN (Elevator Algorithm)

Principle: The disk head starts at one end of the disk and moves
towards the other end, servicing all requests in its path. Once it
reaches the end, it reverses direction and continues servicing requests.

Analogy: It mimics the behavior of an elevator that picks up and
drops off passengers as it travels up and down a building.

Pros:
▶ Provides a more uniform wait time than SSTF.
▶ Eliminates starvation for requests.

Cons: Requests just bypassed (e.g., at the end of a scan) will have to
wait for the entire sweep of the disk.

Example: Head at 53, moving towards 199. Queue = [98, 183, 37,

122, 14, 124, 65, 67]

Sequence: 53 → 65 → 67 → 98 → 122 → 124 → 183 → 199 (reaches
end) → 37 → 14 → 0 (reaches other end).

SDB OS 79 / 134

SCAN (Elevator Algorithm)

Principle: The disk head starts at one end of the disk and moves
towards the other end, servicing all requests in its path. Once it
reaches the end, it reverses direction and continues servicing requests.

Analogy: It mimics the behavior of an elevator that picks up and
drops off passengers as it travels up and down a building.

Pros:
▶ Provides a more uniform wait time than SSTF.
▶ Eliminates starvation for requests.

Cons: Requests just bypassed (e.g., at the end of a scan) will have to
wait for the entire sweep of the disk.

Example: Head at 53, moving towards 199. Queue = [98, 183, 37,

122, 14, 124, 65, 67]

Sequence: 53 → 65 → 67 → 98 → 122 → 124 → 183 → 199 (reaches
end) → 37 → 14 → 0 (reaches other end).

SDB OS 79 / 134

LOOK Scheduling

Principle: A practical variation of SCAN. Instead of sweeping all the
way to the end of the disk, the head only goes as far as the last
request in the current direction, and then reverses.

Pros:
▶ Avoids unnecessary travel to the very ends of the disk.
▶ Reduces total head movement compared to SCAN.
▶ Still provides good fairness and avoids starvation.

Variants:

C-SCAN (Circular SCAN): Similar to SCAN, but when the head
reaches one end, it immediately returns to the other end without
servicing requests on the return trip. This provides more uniform wait
times for all requests (useful in heavily loaded systems).

C-LOOK (Circular LOOK): The practical version of C-SCAN,
where the head only goes to the last request in one direction before
quickly jumping back to the last request in the opposite direction
without servicing requests during the jump.

SDB OS 80 / 134

LOOK Scheduling

Principle: A practical variation of SCAN. Instead of sweeping all the
way to the end of the disk, the head only goes as far as the last
request in the current direction, and then reverses.

Pros:
▶ Avoids unnecessary travel to the very ends of the disk.
▶ Reduces total head movement compared to SCAN.
▶ Still provides good fairness and avoids starvation.

Variants:

C-SCAN (Circular SCAN): Similar to SCAN, but when the head
reaches one end, it immediately returns to the other end without
servicing requests on the return trip. This provides more uniform wait
times for all requests (useful in heavily loaded systems).

C-LOOK (Circular LOOK): The practical version of C-SCAN,
where the head only goes to the last request in one direction before
quickly jumping back to the last request in the opposite direction
without servicing requests during the jump.

SDB OS 80 / 134

Disk Scheduling Algorithm Comparison

Algorithm Average Seek Time Fairness Starvation Risk Implementation Complexity
FCFS Poor High None Low

SSTF Good (Lowest) Low Yes Medium

SCAN Better Moderate None Medium

LOOK Best (Practical) Good None Medium

SDB OS 81 / 134

Choosing a Scheduling Strategy

The optimal disk scheduling algorithm depends heavily on the specific
workload and the type of storage device.

Workload Characteristics:
▶ Heavy Random Access: Algorithms that minimize average seek time,

like SSTF or LOOK, tend to perform well.
▶ Mixed Workloads + Fairness: SCAN or LOOK are generally

preferred as they provide a good balance of performance and equitable
service.

▶ Real-time constraints: None of these general-purpose algorithms
provide strict real-time guarantees.

Device Type:
▶ HDDs: Disk scheduling is crucial due to significant mechanical seek

times.
▶ SSDs (Solid State Drives): Since SSDs have no moving parts, seek

time is virtually zero. Therefore, traditional disk scheduling algorithms
are largely irrelevant for SSDs; requests can often be serviced in FCFS
order.

SDB OS 82 / 134

Key Takeaways

Disk access latency is dominated by seek time and rotational
latency.

Disk scheduling algorithms reorder I/O requests to minimize head
movement and improve overall I/O throughput.

Algorithms like SSTF prioritize performance by minimizing seek time
but can lead to starvation.

SCAN and LOOK (and their circular variants) offer a better balance
of performance and fairness, effectively preventing starvation.

The choice of algorithm depends on the workload and the storage
device type; for SSDs, disk scheduling is less relevant.

SDB OS 83 / 134

Next Week Preview: RAID and Modern Storage
Architectures

Building on our understanding of individual disk performance, next week
we’ll explore how multiple disks can be combined to enhance both
performance and reliability.

RAID (Redundant Array of Independent Disks): Combining
multiple physical disks into a single logical unit.

RAID Levels: Understanding different configurations like Striping
(RAID 0), Mirroring (RAID 1), and parity-based RAID levels (RAID
5, 6).

SSD Architecture: A deeper dive into how Solid State Drives work
and their implications for OS design.

Storage Trends: Emerging storage technologies and their impact on
system performance.

SDB OS 84 / 134

Appendix: Quiz, Exercises, and Advanced Topics I

Quiz & Exercises

1 Explain why disk scheduling algorithms are less critical for Solid State
Drives (SSDs) compared to Hard Disk Drives (HDDs).

2 What is Belady’s Anomaly, and why is it not observed in disk
scheduling algorithms like SCAN or LOOK?

3 Exercise: A disk has 200 cylinders (0-199). The head is currently at
cylinder 50. The queue of requests is: [82, 170, 43, 140, 24,
16, 190]. Calculate the total head movement for:

1 FCFS
2 SSTF
3 SCAN (moving towards 199 first)

Advanced Topics to Explore

Elevator Algorithm with Shortest Seek Priority: Combining
SCAN/LOOK with elements of SSTF to optimize within a scan
direction.

SDB OS 85 / 134

Appendix: Quiz, Exercises, and Advanced Topics II

I/O Schedulers in Linux: Exploring specific implementations like
CFQ (Completely Fair Queuing), Deadline, and NOOP.

Flash Translation Layer (FTL) in SSDs: The firmware layer that
manages data placement and wear leveling on SSDs.

NVMe (Non-Volatile Memory Express): A new communication
protocol for SSDs that reduces latency and improves parallelism.

SDB OS 86 / 134

Week 9

Agenda

1 Introduction to RAID

2 RAID Levels: 0, 1, 5, & 6

3 Striping, Mirroring, & Parity

4 SSD vs. HDD: Architecture and Access Model

5 Storage Trends and OS Implications

6 Summary & Key Takeaways

7 Next Week’s Preview

SDB OS 87 / 134

What is RAID?

RAID stands for Redundant Array of Independent Disks.

It is a storage technology that combines multiple physical disk drives
into a single logical unit.

The primary goals of RAID are to improve:
▶ Performance: By distributing data across multiple drives.
▶ Reliability: By adding redundancy to protect against drive failure.

The two core mechanisms used in RAID are data striping (for per-
formance) and redundancy (for reliability, using either mirroring or
parity).

SDB OS 88 / 134

What is RAID?

RAID stands for Redundant Array of Independent Disks.

It is a storage technology that combines multiple physical disk drives
into a single logical unit.

The primary goals of RAID are to improve:
▶ Performance: By distributing data across multiple drives.
▶ Reliability: By adding redundancy to protect against drive failure.

The two core mechanisms used in RAID are data striping (for per-
formance) and redundancy (for reliability, using either mirroring or
parity).

SDB OS 88 / 134

RAID 0 and RAID 1

RAID 0 (Striping):
▶ Data is broken into stripes and written across all disks in the array.
▶ This provides a significant boost in performance, as read/write

operations can happen concurrently on multiple disks.
▶ Drawback: It offers no redundancy. If any single disk in the array

fails, all data is lost. It is a performance-only solution.

RAID 1 (Mirroring):
▶ All data is written identically to two separate drives. The drives are an

exact mirror of each other.
▶ This provides 100% redundancy and excellent fault tolerance. If one

disk fails, the other can take over seamlessly.
▶ Drawback: It’s inefficient in terms of storage capacity, as only half of

the total raw disk space is usable.

SDB OS 89 / 134

RAID 5 and RAID 6

These levels use a more efficient form of redundancy called parity. Parity
is a calculated value (typically from an XOR operation) that allows the
system to reconstruct lost data from a failed drive.

RAID 5 (Striping with Distributed Parity):
▶ Data and parity information are striped across all disks. The parity for

a block of data is stored on a different disk than the data itself.
▶ It can tolerate the loss of one disk in the array without data loss.
▶ It offers a good balance of performance, capacity, and fault tolerance.

RAID 6 (Striping with Double Parity):
▶ Similar to RAID 5, but it stores a second, independent parity block for

each stripe.
▶ This allows the array to survive the simultaneous failure of two disks.
▶ It is more reliable than RAID 5 but has a slightly higher write overhead.

SDB OS 90 / 134

RAID Level Comparison

RAID Level Core Mechanism Capacity Efficiency Fault Tolerance
RAID 0 Striping 100% None

RAID 1 Mirroring 50% 1 drive

RAID 5 Striping + Parity (n − 1)/n 1 drive

RAID 6 Striping + Double Parity (n − 2)/n 2 drives

Note: n is the number of drives in the array.

SDB OS 91 / 134

Solid-State Drives (SSD)

SSDs use non-volatile NAND flash memory chips instead of spinning
platters and moving heads.

Key Architectural Differences:
▶ No moving parts: Eliminates mechanical delays like seek time and

rotational latency.
▶ Near-uniform access time: Accessing a block at the ”end” of the

drive is as fast as accessing one at the ”beginning.”
▶ Flash Translation Layer (FTL): A critical firmware layer that maps

logical block addresses to physical ones, handles garbage collection,
and performs wear leveling to extend the drive’s lifespan.

These architectural differences have profound implications for oper-
ating system design and performance optimization.

SDB OS 92 / 134

Solid-State Drives (SSD)

SSDs use non-volatile NAND flash memory chips instead of spinning
platters and moving heads.

Key Architectural Differences:
▶ No moving parts: Eliminates mechanical delays like seek time and

rotational latency.
▶ Near-uniform access time: Accessing a block at the ”end” of the

drive is as fast as accessing one at the ”beginning.”
▶ Flash Translation Layer (FTL): A critical firmware layer that maps

logical block addresses to physical ones, handles garbage collection,
and performs wear leveling to extend the drive’s lifespan.

These architectural differences have profound implications for oper-
ating system design and performance optimization.

SDB OS 92 / 134

SSD vs. HDD – OS Implications

Disk Scheduling: Since SSDs have virtually zero seek time,
traditional disk scheduling algorithms like SSTF or LOOK are largely
irrelevant and are often disabled or replaced with simpler policies
(e.g., FCFS) in modern kernels.

I/O Models: The non-linear access behavior of SSDs (where erasing
a block is slow) has led to new I/O models and file systems.

Garbage Collection & TRIM: OSes now need to support the
‘TRIM‘ command, which informs the SSD of deleted files so the FTL
can reclaim the physical blocks more efficiently.

SSD-Optimized File Systems: File systems like F2FS
(Flash-Friendly File System) are designed specifically for the unique
characteristics of flash memory to improve performance and longevity.

SDB OS 93 / 134

Key Takeaways

RAID is a key technology for combining multiple disks to improve
performance and/or reliability.

RAID 0 provides a performance boost with no redundancy, while
RAID 1 offers full data mirroring.

RAID 5 and RAID 6 use parity to provide fault tolerance with
better capacity efficiency than mirroring.

SSDs fundamentally change the I/O landscape by eliminating
mechanical delays, rendering traditional disk scheduling algorithms
obsolete.

The OS must adapt to modern storage technologies by providing new
features like TRIM and supporting specialized file systems.

SDB OS 94 / 134

Next Week Preview: File I/O System Calls in Linux/UNIX

Now that we understand the underlying storage architecture, we will move
up the stack to the interface that applications use to interact with files.

System Calls: A detailed look at the fundamental I/O system calls:
‘open()‘, ‘read()‘, ‘write()‘, and ‘close()‘.

File Descriptors: The integer handle used by the OS to track open
files for each process.

Standard I/O vs. System Calls: The difference between the ‘stdio‘
library functions and the low-level kernel system calls.

Buffering: How the OS and libraries use buffers to optimize I/O
performance.

SDB OS 95 / 134

Appendix: Quiz, Exercises, and Advanced Topics
Quiz & Exercises

1 What is the main difference between mirroring and parity-based
redundancy in RAID?

2 A system has 5 disks of 1 TB each. What is the total usable capacity
for a RAID 1, RAID 5, and RAID 6 configuration?

3 Exercise: Why is it impossible to create a RAID 5 array with only
two disks?

Advanced Topics to Explore

RAID 10 and 50: Nested RAID levels that combine the benefits of
striping and mirroring/parity.

Erasure Coding: A more advanced form of redundancy used in
large-scale distributed storage systems.

Wear Leveling: The specific mechanisms used in an SSD’s FTL to
evenly distribute write operations across all flash blocks.

SDB OS 96 / 134

Week 10

Agenda

1 File Descriptors and the UNIX I/O Model

2 System Calls: open(), read(), write(), close()

3 File Access Modes and Flags

4 Standard I/O vs. System I/O

5 Buffering and Performance Considerations

6 Summary & Key Takeaways

7 Next Week’s Preview

SDB OS 97 / 134

File Descriptors and the UNIX I/O Model
A file descriptor (FD) is a non-negative integer returned by the
open() system call. It’s an abstract handle used by the OS to refer
to an open file.

Every process maintains its own file descriptor table, which maps
these integers to specific open files.
By convention, every process starts with three standard file
descriptors automatically opened:

▶ 0 = Standard Input (stdin)
▶ 1 = Standard Output (stdout)
▶ 2 = Standard Error (stderr)

Analogy

Think of a file descriptor as a ”ticket number” you get from the
OS when you request to work with a file. You use this number for
all subsequent operations, and the OS uses it to look up the file’s
information (current position, status flags, etc.).

SDB OS 98 / 134

File Descriptors and the UNIX I/O Model
A file descriptor (FD) is a non-negative integer returned by the
open() system call. It’s an abstract handle used by the OS to refer
to an open file.

Every process maintains its own file descriptor table, which maps
these integers to specific open files.
By convention, every process starts with three standard file
descriptors automatically opened:

▶ 0 = Standard Input (stdin)
▶ 1 = Standard Output (stdout)
▶ 2 = Standard Error (stderr)

Analogy

Think of a file descriptor as a ”ticket number” you get from the
OS when you request to work with a file. You use this number for
all subsequent operations, and the OS uses it to look up the file’s
information (current position, status flags, etc.).

SDB OS 98 / 134

open() and close() System Calls
The open() system call is the first step to performing I/O. It asks the OS
to open a file and returns a file descriptor. close() releases that
descriptor.

int fd = open("data.txt", O_RDONLY);

if (fd < 0) {

perror("open failed");

return 1;

}

// Use fd for read/write operations ...

close(fd); // Release the file descriptor

Flags (Access Modes): The second argument to open() uses bitwise
OR (|) to combine flags that specify how the file should be opened:

O RDONLY, O WRONLY, O RDWR: Read-only, write-only, or read-write.

O CREAT: Creates the file if it does not exist. (Requires a third ‘mode‘
argument for permissions).

O APPEND: Appends data to the end of the file.

O TRUNC: Truncates the file to a size of zero if it already exists.

SDB OS 99 / 134

open() and close() System Calls
The open() system call is the first step to performing I/O. It asks the OS
to open a file and returns a file descriptor. close() releases that
descriptor.

int fd = open("data.txt", O_RDONLY);

if (fd < 0) {

perror("open failed");

return 1;

}

// Use fd for read/write operations ...

close(fd); // Release the file descriptor

Flags (Access Modes): The second argument to open() uses bitwise
OR (|) to combine flags that specify how the file should be opened:

O RDONLY, O WRONLY, O RDWR: Read-only, write-only, or read-write.

O CREAT: Creates the file if it does not exist. (Requires a third ‘mode‘
argument for permissions).

O APPEND: Appends data to the end of the file.

O TRUNC: Truncates the file to a size of zero if it already exists.
SDB OS 99 / 134

read() and write() System Calls
These are the fundamental system calls for transferring data to and from a
file.

char buf [100];

int n_read = read(fd , buf , 100); // Read up to 100

bytes from ’fd’

if (n_read > 0) {

int n_written = write(1, buf , n_read); // Write ’

n_read ’ bytes to stdout

}

Return Value Significance: The return value is critical for error checking
and flow control.

¿ 0: The number of bytes successfully read or written.

0: For read(), this indicates the end of file (EOF) has been
reached. For write(), it means no bytes were written.

-1: An error occurred. The global variable errno is set to indicate
the specific error.

SDB OS 100 / 134

read() and write() System Calls
These are the fundamental system calls for transferring data to and from a
file.

char buf [100];

int n_read = read(fd , buf , 100); // Read up to 100

bytes from ’fd’

if (n_read > 0) {

int n_written = write(1, buf , n_read); // Write ’

n_read ’ bytes to stdout

}

Return Value Significance: The return value is critical for error checking
and flow control.

¿ 0: The number of bytes successfully read or written.

0: For read(), this indicates the end of file (EOF) has been
reached. For write(), it means no bytes were written.

-1: An error occurred. The global variable errno is set to indicate
the specific error.

SDB OS 100 / 134

System I/O vs. Standard I/O
System I/O (open(), read(), write()) is the low-level, unbuffered
interface to the kernel. Each call typically results in a system call and
a context switch, making it relatively slow for small, frequent I/O
operations.
Standard I/O (fopen(), fread(), fwrite()) is a higher-level
library (e.g., stdio.h in C) built on top of System I/O. It provides a
more convenient, buffered interface.

Code Example (Standard I/O):

FILE *fp = fopen("data.txt", "r");

if (fp == NULL) { /* error handling */ }

char buf [100];

fgets(buf , 100, fp); // Reads a line into the buffer

fclose(fp);

Standard I/O is generally preferred for application-level code due to
its ease of use and performance optimizations through buffering.

SDB OS 101 / 134

System I/O vs. Standard I/O
System I/O (open(), read(), write()) is the low-level, unbuffered
interface to the kernel. Each call typically results in a system call and
a context switch, making it relatively slow for small, frequent I/O
operations.
Standard I/O (fopen(), fread(), fwrite()) is a higher-level
library (e.g., stdio.h in C) built on top of System I/O. It provides a
more convenient, buffered interface.

Code Example (Standard I/O):

FILE *fp = fopen("data.txt", "r");

if (fp == NULL) { /* error handling */ }

char buf [100];

fgets(buf , 100, fp); // Reads a line into the buffer

fclose(fp);

Standard I/O is generally preferred for application-level code due to
its ease of use and performance optimizations through buffering.

SDB OS 101 / 134

Buffering and Performance

What is a Buffer? A buffer is a temporary storage area in user space
(part of the application’s memory).

How it Works: The Standard I/O library reads large chunks of data
from the disk into this buffer with a single system call. Subsequent
small reads (fgetc(), etc.) are then satisfied directly from the buffer,
avoiding frequent, expensive system calls.

Trade-off: Buffering introduces a slight delay before data is actually
written to the disk, but it significantly reduces the number of costly
context switches, leading to a major performance improvement for
most workloads.

Buffer Control: The setvbuf() function allows programmers to
control the buffering policy (e.g., full buffering, line buffering, or no
buffering at all).

SDB OS 102 / 134

Key Takeaways

The UNIX I/O model uses a small integer called a file descriptor
to represent an open file, providing a consistent interface for all I/O
devices.

Low-level System Calls like open(), read(), write(), and close()

are the kernel’s fundamental interface to file systems and devices.

File flags such as O RDWR and O CREAT are used to specify the
desired file access mode and behavior.

Standard I/O is a library that provides a high-level, buffered
abstraction over the raw system calls, optimizing performance by
reducing context switches.

SDB OS 103 / 134

Next Week Preview: Final Wrap-Up and Review

This marks the final content lecture for the OS module. Next week, we
will transition to a comprehensive review.

Core Concepts Recap: We will revisit and connect key topics from
the entire course, including Process Management, Concurrency,
Virtual Memory, and File Systems.

Integration Review: We will discuss how different OS components
interact with each other (e.g., how virtual memory and file systems
are intertwined).

Exam Preparation: A focused Q&A session to address student
questions and clarify concepts in preparation for the final exam.

SDB OS 104 / 134

Appendix: Quiz, Exercises, and Advanced Topics I

Quiz & Exercises

1 What would the file descriptor be for a file opened after a process has
started and before any other files are opened?

2 Explain the difference in a C program between using write(1, buf,

n) and fprintf(stdout, "...", ...).

3 Exercise: Write the open() call to open a file named ‘log.txt‘ for
writing, creating it if it doesn’t exist, and appending all new data to
the end of the file.

SDB OS 105 / 134

Appendix: Quiz, Exercises, and Advanced Topics II

Advanced Topics to Explore

‘mmap()‘ (Memory-mapped I/O): A powerful system call that
maps a file directly into a process’s virtual address space.

‘ioctl()‘: A device-specific system call used for special control
operations on a file or device.

File Locking: Mechanisms to control concurrent access to a file by
multiple processes.

Non-blocking I/O: Using flags like O NONBLOCK to prevent a process
from being put to sleep during I/O operations.

SDB OS 106 / 134

Week 11

Agenda

1 Memory Management Recap

2 File Systems Recap

3 Disk I/O and Storage Review

4 Interconnections and Integration

5 Project Prompts and Lab Alignment

6 Summary & Key Takeaways

7 Next Week’s Preview

SDB OS 107 / 134

Memory Management Recap
Logical ↔ Physical Address Translation: We saw how the OS
provides an abstraction of a process’s memory space, translating its
logical addresses into physical addresses in RAM.
Paging and Segmentation: These are techniques for dividing
memory into fixed-size pages or variable-size segments, respectively,
to allow for non-contiguous allocation and better memory utilization.
Virtual Memory and Page Faults: We explored how virtual
memory creates the illusion of infinite memory, triggering a page fault
when a requested page is not present in RAM.
Page Replacement: Algorithms like FIFO, LRU, and Clock are used
to decide which page to evict from memory to make room for a new
one, with the goal of minimizing future page faults.

Core Challenge

The memory manager’s role is to balance performance, protection,
and flexibility for all running processes.

SDB OS 108 / 134

Memory Management Recap
Logical ↔ Physical Address Translation: We saw how the OS
provides an abstraction of a process’s memory space, translating its
logical addresses into physical addresses in RAM.
Paging and Segmentation: These are techniques for dividing
memory into fixed-size pages or variable-size segments, respectively,
to allow for non-contiguous allocation and better memory utilization.
Virtual Memory and Page Faults: We explored how virtual
memory creates the illusion of infinite memory, triggering a page fault
when a requested page is not present in RAM.
Page Replacement: Algorithms like FIFO, LRU, and Clock are used
to decide which page to evict from memory to make room for a new
one, with the goal of minimizing future page faults.

Core Challenge

The memory manager’s role is to balance performance, protection,
and flexibility for all running processes.

SDB OS 108 / 134

File System Concepts Recap
Metadata via Inodes/FCBs: A file is more than just its data; we
learned about the importance of metadata (permissions, size,
timestamps) stored in an inode (or File Control Block).
Directory Structures: Directories map human-readable filenames to
inodes, organizing files in hierarchical structures like trees or acyclic
graphs.
File Allocation Strategies: We compared the trade-offs of
contiguous, linked, and indexed allocation in balancing
performance, fragmentation, and flexibility.
Free Space Management: We reviewed techniques like bitmaps and
linked lists, which the file system uses to efficiently track and allocate
unallocated disk blocks.

Goal

To provide a reliable, fast, and consistent interface for an application
to access persistent data.

SDB OS 109 / 134

File System Concepts Recap
Metadata via Inodes/FCBs: A file is more than just its data; we
learned about the importance of metadata (permissions, size,
timestamps) stored in an inode (or File Control Block).
Directory Structures: Directories map human-readable filenames to
inodes, organizing files in hierarchical structures like trees or acyclic
graphs.
File Allocation Strategies: We compared the trade-offs of
contiguous, linked, and indexed allocation in balancing
performance, fragmentation, and flexibility.
Free Space Management: We reviewed techniques like bitmaps and
linked lists, which the file system uses to efficiently track and allocate
unallocated disk blocks.

Goal

To provide a reliable, fast, and consistent interface for an application
to access persistent data.

SDB OS 109 / 134

Disk and I/O Management Recap
Access Latency: We identified that seek time (the time to move
the disk head) is the dominant factor in access latency for Hard Disk
Drives (HDDs).
Disk Scheduling: Algorithms like FCFS, SSTF, SCAN, and LOOK
were introduced to reorder I/O requests and minimize total head
movement, thereby improving I/O throughput.
RAID: We discussed how RAID (Redundant Array of Independent
Disks) combines multiple physical drives to improve either
performance (RAID 0) or reliability (RAID 1, 5, 6).
Modern Storage: The advent of SSDs has revolutionized I/O by
eliminating seek time, necessitating new OS considerations like the
Flash Translation Layer (FTL) and the ‘TRIM‘ command.

I/O Path

The performance of an I/O operation is a function of the device’s
physical latency, the OS’s queuing policy, and the chosen scheduling
algorithm.

SDB OS 110 / 134

Disk and I/O Management Recap
Access Latency: We identified that seek time (the time to move
the disk head) is the dominant factor in access latency for Hard Disk
Drives (HDDs).
Disk Scheduling: Algorithms like FCFS, SSTF, SCAN, and LOOK
were introduced to reorder I/O requests and minimize total head
movement, thereby improving I/O throughput.
RAID: We discussed how RAID (Redundant Array of Independent
Disks) combines multiple physical drives to improve either
performance (RAID 0) or reliability (RAID 1, 5, 6).
Modern Storage: The advent of SSDs has revolutionized I/O by
eliminating seek time, necessitating new OS considerations like the
Flash Translation Layer (FTL) and the ‘TRIM‘ command.

I/O Path

The performance of an I/O operation is a function of the device’s
physical latency, the OS’s queuing policy, and the chosen scheduling
algorithm.
SDB OS 110 / 134

Integration View: The I/O Stack
Process Request

(e.g., ‘read()‘ a file)

Memory Manager
(Paging, TLB)

File System
(Inodes, Blocks)

Disk Driver & Sched-
uler
(I/O Queue, SCAN)

Physical Disk /
SSD Hardware

Logical File Access

Page Fault

I/O Request

Physical Read

The path of a file access request from a process to the physical
hardware, highlighting the role of each OS component.
SDB OS 111 / 134

Project / Lab Alignment Ideas
These project ideas build upon the concepts covered in this module,
allowing for hands-on application of theory.

Paging Simulator: Visualize a page replacement algorithm (e.g.,
LRU) by showing a reference string and tracking page faults in
real-time.
Simple File System Emulator: Implement a small, in-memory file
system that manages blocks, inodes, and a directory structure.
Disk Scheduling Animator: Create an animated simulation of
different disk scheduling algorithms, showing the head’s movement
across the cylinders.
I/O Benchmarker: Use system utilities like ‘dd‘ to measure and
compare the I/O performance of different block sizes or access
patterns on an SSD vs. an HDD.

Advanced Project Concepts:

Build a simulated Flash Translation Layer for an SSD, including
policies for wear leveling and garbage collection.
Implement a multi-level indexed file allocation scheme to see how it
scales for very large files.

SDB OS 112 / 134

Project / Lab Alignment Ideas
These project ideas build upon the concepts covered in this module,
allowing for hands-on application of theory.

Paging Simulator: Visualize a page replacement algorithm (e.g.,
LRU) by showing a reference string and tracking page faults in
real-time.
Simple File System Emulator: Implement a small, in-memory file
system that manages blocks, inodes, and a directory structure.
Disk Scheduling Animator: Create an animated simulation of
different disk scheduling algorithms, showing the head’s movement
across the cylinders.
I/O Benchmarker: Use system utilities like ‘dd‘ to measure and
compare the I/O performance of different block sizes or access
patterns on an SSD vs. an HDD.

Advanced Project Concepts:

Build a simulated Flash Translation Layer for an SSD, including
policies for wear leveling and garbage collection.
Implement a multi-level indexed file allocation scheme to see how it
scales for very large files.SDB OS 112 / 134

Key Takeaways

The OS’s primary role is to act as a resource manager, providing an
abstraction over physical hardware to make it easy for applications to
run.

Performance is a delicate balance of allocation strategies (memory,
file blocks), access patterns, and scheduling algorithms.

The different layers of the OS—the memory manager, file system, and
disk scheduler—are not isolated. They form a tightly integrated
stack, where a decision at one layer directly impacts the performance
of others.

A deep understanding of these layers is crucial for writing efficient and
reliable software.

SDB OS 113 / 134

Next Week: Transition to Faculty C Topics

This marks the end of our module on resource management and system
abstractions. Next week, we will shift our focus from what the OS
manages to how it coordinates and secures these resources across different
environments.

Synchronization in Distributed Systems: Moving beyond a single
machine.

Deadlocks: A deeper dive into prevention, avoidance, and detection.

Virtualization and Containers: The new frontier in resource
isolation and coordination.

Security and Protection: OS mechanisms for secure, coordinated
execution.

A great deal of what we’ve learned this term is the foundation for
these advanced topics!

SDB OS 114 / 134

Week 12

Agenda: Integrated Review & Advanced Exercises

1 Integrated Conceptual & Analytical Questions

2 Algorithmic & Coding Exercises

3 Practical Linux Commands & System Exploration

4 Case Studies & Research Prompts

5 Simulation & Visualization Project Ideas

6 Summary & Key Takeaways

7 Final Review & Next Steps

SDB OS 115 / 134

Integrated Conceptual & Analytical Questions I

These questions require understanding concepts from multiple
weeks.

(Memory Management & File Systems):
▶ When a process opens a file, describe the journey of a logical address

(within the process’s address space) used to access a byte in that file,
all the way to its physical location on disk. What OS components are
involved at each stage of translation and retrieval?

▶ How does the OS prevent a process from accessing sensitive data in a
file that is memory-mapped into its virtual address space, even if the
file contains privileged information? (Consider virtual memory
protection mechanisms).

(Paging & Disk I/O):
▶ Explain the potential performance impact of a consistently high page

fault rate on a system using an HDD, particularly considering disk
scheduling algorithms. How would this impact differ if the system used
an SSD?

SDB OS 116 / 134

Integrated Conceptual & Analytical Questions II
▶ In a system with limited physical memory, why might adding more

processes (increasing multiprogramming) lead to thrashing, and how
can the OS detect and mitigate this condition using concepts from
both memory management and process scheduling?

(Concurrency & File I/O):
▶ Discuss the challenges of implementing a multi-threaded application

that performs concurrent writes to the same section of a single file.
What synchronization mechanisms (e.g., mutexes, semaphores, file
locks) would be necessary, and what are the trade-offs?

▶ If two processes simultaneously attempt to ‘open()‘ the same file with
different access modes (e.g., one for read, one for write), how does the
OS typically handle this? What metadata is involved in enforcing
proper access?

(Overall System Design):
▶ How does the choice of disk block size affect both internal

fragmentation in file allocation and the efficiency of demand paging?
Provide a scenario where a very large block size could be detrimental to
overall system performance.

SDB OS 117 / 134

Integrated Conceptual & Analytical Questions III

▶ Describe a scenario where a system using RAID 0 could lead to a
catastrophic failure that a system using RAID 1 would survive. What
are the implications for a high-performance, write-intensive application?

SDB OS 118 / 134

Algorithmic & Coding Exercises I

Implement solutions to these problems in C/C++ or Python.

(Page Replacement Simulator):
▶ Implement a simulator for FIFO, LRU, and Clock page replacement

algorithms. Your program should take a reference string and number of
frames as input and output the number of page faults for each
algorithm. Include a feature to demonstrate Belady’s Anomaly for
FIFO.

(File Allocation Simulator):
▶ Create a program that simulates a simplified file system. It should

manage a fixed number of disk blocks using a bitmap for free space
management. Implement ‘create file()‘, ‘delete file()‘, and ‘read file()‘
functions using indexed allocation.

(Disk Scheduling Simulator):
▶ Write a program that simulates FCFS, SSTF, SCAN, and LOOK disk

scheduling algorithms. Take an initial head position and a queue of
pending requests (cylinder numbers) as input. Output the sequence of
head movements and the total head movement for each algorithm.

SDB OS 119 / 134

Algorithmic & Coding Exercises II

(Producer-Consumer with File I/O):
▶ Extend the Producer-Consumer problem to involve file I/O. The

producer thread reads lines from an input file, processes them, and
puts them into a shared buffer. The consumer thread takes processed
lines from the buffer and writes them to an output file. Use pthreads
(pthread mutex t, pthread cond t) for synchronization.

SDB OS 120 / 134

Practical Linux Commands & System Exploration I

Use a Linux environment (VM or WSL) for these exercises.

(Memory Usage Analysis):
▶ Use free -h and cat /proc/meminfo to understand the system’s

current RAM usage, swap usage, and kernel buffer/cache sizes. Explain
what MemAvailable truly represents.

▶ Run a memory-intensive program (e.g., a simple C program that
allocates a large array). While it’s running, use top, htop, and pmap

<pid> to analyze its virtual (VSZ) and resident (RSS) memory usage.
How do these values change over time?

(Disk I/O Performance):
▶ Use iostat -x 1 to monitor disk I/O statistics (read/write

throughput, I/O requests per second, queue size) while simultaneously
performing large file operations using dd (e.g., dd if=/dev/zero

of=testfile bs=1M count=1024 conv=fdatasync). Analyze the
impact of conv=fdatasync on performance.

SDB OS 121 / 134

Practical Linux Commands & System Exploration II

▶ Explore different I/O schedulers in Linux: cat
/sys/block/sda/queue/scheduler. Change the scheduler (e.g., to
‘noop‘, ‘deadline‘, ‘mq-deadline‘) using ‘echo‘ and re-run your ‘dd‘
tests. Observe if there’s a significant performance difference on an
HDD vs. an SSD.

(File System Metadata):
▶ Create a file, then create a hard link to it using ln. Use ls -li to

inspect their inode numbers and link counts. Explain the implications
for deletion.

▶ Create a symbolic link (symlink) using ln -s. Compare its inode
number and size to the original file. How does the OS handle deleting
a symlink vs. a hard link?

SDB OS 122 / 134

Case Studies & Research Prompts I

These topics encourage deeper dives into real-world systems and
research.

(Advanced OS Memory Management):
▶ Research and compare the memory management techniques used in

two different modern operating systems (e.g., Linux’s CFS & memory
management, Windows’ Virtual Memory Manager, or macOS’s memory
compression). Focus on their page replacement policies, TLB
management, and handling of memory overcommit.

▶ Investigate Transparent HugePages (THP) in Linux. How does it
work, what problem does it solve, and what are its potential
performance benefits and drawbacks?

(Modern File System Features):
▶ Choose a modern file system (e.g., Btrfs, ZFS, Ext4’s advanced

features). Research its key innovations beyond basic allocation (e.g.,
copy-on-write, snapshots, checksums, data deduplication, subvolumes,
built-in RAID). Discuss how these features address real-world data
management challenges.

SDB OS 123 / 134

Case Studies & Research Prompts II

▶ Research the concept of a Log-Structured File System (LSFS). How
does it fundamentally differ from traditional file systems in its write
strategy, and what are its advantages and disadvantages, especially for
flash-based storage?

(Emerging Storage Technologies):
▶ Research Non-Volatile Memory Express (NVMe) and Persistent

Memory (PMem) technologies. How do these new storage classes
challenge traditional CPU-I/O models and memory hierarchies? What
implications do they have for future OS designs and application
programming?

▶ Explore the concept of Computational Storage Drives (CSD). How
do they offload processing directly to the storage device, and what
problems are they designed to solve in big data and AI workloads?

SDB OS 124 / 134

Simulation & Visualization Project Ideas I

Design and potentially implement a visual simulator for
understanding key OS concepts.

(Virtual Memory Visualization):
▶ Create an interactive visualization tool that shows the

virtual-to-physical address translation process. Allow users to input
logical addresses and see how the MMU, page table, and TLB
cooperate to find the physical address. Highlight page faults and TLB
hits/misses.

(Concurrency Visualization):
▶ Develop a simulation of multiple threads accessing a critical section.

Visualize the use of mutexes or semaphores to prevent race conditions.
Show threads attempting to enter, waiting, and exiting the critical
section.

(File Fragmentation Analyzer):

SDB OS 125 / 134

Simulation & Visualization Project Ideas II

▶ Build a simple graphical tool that represents disk blocks. Allow users to
”create” and ”delete” files (using contiguous allocation) and visualize
how external fragmentation develops over time. Implement a
”compaction” feature to show its effect.

(RAID Configuration Explorer):
▶ Create an interactive diagram that demonstrates data striping and

parity distribution for different RAID levels (0, 1, 5, 6). Allow users to
”simulate” a disk failure and show how data is reconstructed (or lost).

SDB OS 126 / 134

Key Takeaways from the Entire Course

The OS acts as a complex resource manager, providing crucial
abstractions over raw hardware.

Understanding the interplay between hardware support (MMU,
TLB, Disk Controllers) and software policies (scheduling, memory
management, file systems) is fundamental.

Concepts like concurrency, synchronization, virtual memory, and
persistent storage are deeply interconnected and essential for
building reliable and performant systems.

Trade-offs are inherent in OS design: performance vs. fairness,
simplicity vs. flexibility, capacity vs. redundancy.

The OS is constantly evolving to adapt to new hardware (SSDs,
NVMe, multi-core CPUs) and new demands (cloud computing,
containers, virtualization).

SDB OS 127 / 134

Final Review & Next Steps
Congratulations on completing the core Operating Systems
curriculum!

This week’s exercises are designed to help you synthesize knowledge
across all modules.

Use these prompts to solidify your understanding and prepare for the
final assessment.

Review all past lecture slides, notes, and lab materials.

Don’t hesitate to ask questions and discuss concepts with your peers
and instructors.

What’s Next?

Your next steps may involve exploring more advanced topics in
distributed systems, security, or specific kernel programming.

The foundational knowledge you’ve gained here will be invaluable for
any deeper dive into computer science and engineering.

SDB OS 128 / 134

Appendix: Comprehensive Quiz & Exercises I
Section A: Conceptual & Analytical Questions

1 A user process attempts to execute an instruction at logical address
‘0x1000‘. This address falls within a page that is currently not in
physical memory but is valid. Trace the full sequence of events that
the OS and hardware undertake to service this request, from the CPU
generating the address to the instruction successfully executing.

2 Compare and contrast the memory management challenges posed by
multi-threaded processes versus multi-process systems. What common
mechanisms solve these, and what unique issues arise in each context?

3 Discuss the ”write amplification” problem in SSDs. How does it
affect the lifespan of an SSD, and what mechanisms (both at the
firmware and OS level) are in place to mitigate it?

4 Explain how the principle of Locality of Reference is exploited by
both caching (e.g., TLB) and virtual memory (e.g., demand paging).
Provide examples for both temporal and spatial locality in typical
program execution.

SDB OS 129 / 134

Appendix: Comprehensive Quiz & Exercises II

5 You are designing a file system for a video streaming server. Which
file allocation method (contiguous, linked, or indexed) would you
choose and why? Consider sequential access performance, random
access performance, and file size flexibility.

Section B: Algorithmic & Coding Challenges

1 Page Table Implementation (C/C++): Implement a simplified
multi-level page table. Given a virtual address, determine its physical
address. Assume a 32-bit logical address space, 4KB page size, and a
two-level page table structure. Handle page faults by printing a
message, but no actual disk I/O.

2 Synchronization Challenge (C/C++ using pthreads): Implement
a classic ”Readers-Writers” problem where multiple reader threads
can access a shared resource concurrently, but only one writer thread
can access it exclusively. Use mutexes and condition variables.

SDB OS 130 / 134

Appendix: Comprehensive Quiz & Exercises III
3 Disk Block Defragmenter (Python): Write a Python script that

simulates a disk with a fixed number of blocks. Allow creation of files
(as lists of block numbers). Implement a function to ”defragment” a
file, reorganizing its blocks to be contiguous if possible.

4 RAID 5 Parity Calculator (Python): Given a set of data blocks
(e.g., integers or bytes), write a function that calculates the parity
block for a RAID 5 array. Then, simulate a disk failure and write a
function to reconstruct the lost data block using the remaining data
and parity.

Section C: Practical Linux & System Exploration

1 Process Memory Map (Linux): Pick any running process (e.g., a
web browser, a simple text editor). Use ‘cat /proc/¡pid¿/maps‘ to
examine its virtual memory layout. Identify sections like stack, heap,
code (.text), data (.data), and shared libraries. Explain what each
section typically contains.

SDB OS 131 / 134

Appendix: Comprehensive Quiz & Exercises IV

2 Swap Space Observation (Linux): Create and activate a swap file
(dd, mkswap, swapon). Run a program that consumes a lot of
memory until swap usage increases (free -h). Then, terminate the
program and observe how the swap space is reclaimed.

3 File System Block Usage (Linux): Using debugfs (or a similar tool
for your file system, e.g., btrfs inspect-fibs for Btrfs), try to find
the actual physical block numbers on disk that a specific file occupies.
(Note: This might require root privileges and careful usage).

4 I/O Benchmarking with Different Buffering (C/Python): Write a
simple program that performs a large file copy operation. Implement
two versions: one using low-level system calls (read(), write()) and
another using buffered standard I/O (fread(), fwrite()). Compare
their performance for different buffer sizes and file sizes.

Section D: Case Studies & Advanced Concepts

SDB OS 132 / 134

Appendix: Comprehensive Quiz & Exercises V

1 Virtualization vs. Containers (Comparative Analysis):
▶ Create a detailed comparison of Virtual Machines (VMs) and

Containers (e.g., Docker) in terms of resource isolation, startup
time, overhead, and typical use cases. Explain which OS components
are leveraged by each technology to achieve isolation.

2 Real-time Operating Systems (RTOS):
▶ Research the fundamental differences between a general-purpose OS

(like Linux or Windows) and a Real-time Operating System (RTOS).
Focus on their scheduling algorithms, memory management, and how
they provide guaranteed response times for critical operations. Provide
examples of where RTOS are used.

3 Distributed File Systems (Case Study):
▶ Pick a distributed file system (e.g., NFS, HDFS, Ceph). Research its

architecture, how it handles data replication and consistency across
multiple nodes, and its fault tolerance mechanisms. Discuss its
advantages and disadvantages compared to local file systems.

4 OS Security Primitives:

SDB OS 133 / 134

Appendix: Comprehensive Quiz & Exercises VI

▶ Research fundamental OS security primitives beyond simple file
permissions, such as Capabilities, Access Control Lists (ACLs), and
Security-Enhanced Linux (SELinux). Explain how these provide
fine-grained control over resources and enhance system security.

SDB OS 134 / 134

