
Operating Systems – Week 5 Lecture Notes
Instructor: SDB
Theme: Execution Management
Topic: Threads vs Processes

 Lecture Script
Welcome to Week 5!

So far, we’ve treated the process as the basic unit of execution. But that’s just the beginning — today, we
introduce threads: lightweight execution units within a process.

Think of a process as a house, and threads as people living in it. They share resources (kitchen, bathroom), but
they can all be doing different tasks at the same time.

Let’s understand the trade-offs, models, and practical uses of multithreading.

 Core Concepts and Definitions
❖ Thread
Definition: A thread is the smallest unit of execution.
It runs within a process and shares:

 Code section
 Data section (heap)
 Open files
 Address space

Each thread maintains its own:

 Stack
 Program counter (PC)
 Registers

❖ Process vs Thread

Feature Process Thread

Address Space Independent Shared

Overhead High (full context switch) Low (faster switch)

Creation Time Relatively heavy Light

Crash Impact Isolated Can bring down siblings

IPC Via pipes/sockets Direct (shared memory)

❖ Types of Threads
 User-Level Threads (ULT):

o Managed by user-space libraries
o Fast creation/switching
o Kernel unaware of them

 Kernel-Level Threads (KLT):
o Managed by the OS
o True concurrency on multi-core systems
o Higher overhead per thread

 Modern OSes support POSIX threads (pthreads) as KLT.

 Analogy: Text Editor + Spellcheck
A modern word processor:

 UI thread: handles user input
 Background thread: performs spellcheck
 Sync thread: saves document to cloud

All run as threads under the same process → share memory, but operate independently.

 In-Class Live Code Demo (Optional)
#include <pthread.h>
#include <stdio.h>

void* print_msg(void* msg) {
 printf("%s\n", (char*)msg);
 return NULL;
}

int main() {
 pthread_t t1, t2;
 pthread_create(&t1, NULL, print_msg, "Hello");
 pthread_create(&t2, NULL, print_msg, "World");
 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 return 0;
}
Use this to demonstrate:

 Thread creation
 Parallel execution
 Join behavior

 Glossary of Terms
Term Meaning

Thread Lightweight unit of CPU scheduling within a process

Term Meaning

Pthread POSIX standard API for thread operations

User-Level Thread Thread managed in user space

Kernel Thread Thread managed directly by the OS

Join Wait for a thread to finish execution

Race Condition Bug from unsynchronized thread access to shared data

 Topics for Exploration
 Thread-local storage (TLS)
 Thread safety and mutexes
 Multi-threading in Python (threading, multiprocessing)
 How modern browsers use threads (rendering, I/O)
 Green threads vs OS threads (e.g., Go vs C++)

✅ Summary
 Threads are faster and lighter than processes
 Threads share memory, but isolate stack and execution
 Use threads for tasks that benefit from concurrency without full process overhead
 Modern OSes use kernel threads; applications can also abstract user threads
 Always manage shared data access (e.g., mutexes)

✍ Review & Exercises
1. Compare threads vs processes with respect to:

o Memory use
o IPC
o Crash containment

2. Write a pthread-based program that spawns 5 threads to print a counter
3. Discuss why multithreaded apps need synchronization
4. Use top → press H to view threads
5. Observe thread behavior of Firefox or Chrome (ps -Lf)
6. Research: How does Java manage thread lifecycle?
7. Advanced: Create thread race condition using shared counter (without mutex), then fix it

