
Operating Systems – Week 4 Lecture Notes
Instructor: SDB
Theme: Execution Management
Topic: Context Switching and Scheduler View

 Lecture Script
Welcome to Week 4!

Today we explore a critical internal OS mechanism: context switching — the ability of the OS to suspend one
process and resume another seamlessly.

Without context switching, your computer would run only one app at a time. Open Chrome, and Word freezes.
Run Zoom, and your file sync halts. Clearly not acceptable.

We also dissect the scheduler’s role, design goals, and how it views and prioritizes processes.

 Core Concepts and Definitions
❖ Context Switch
Definition:
A context switch is the act of storing the state (context) of a running process so the CPU can load and resume
the execution of another.

It allows multitasking by enabling the CPU to be shared across many processes.

❖ When Does a Context Switch Happen?
 Time slice expires (preemptive scheduling)
 Higher priority process arrives
 Process blocks on I/O
 System call triggers a yield or wait
 Interrupt handling

❖ What Is Saved During a Context Switch?

Component Purpose

CPU registers Resume computation

Program counter (PC) Track next instruction

Stack pointer Manage function calls

Scheduling metadata Priority, state

Memory mappings Virtual memory context (via MMU)

These are stored in the process's PCB and restored during reactivation.

❖ Dispatcher
Definition:
The dispatcher is the OS component responsible for:

 Loading the selected process context
 Resuming its execution by jumping to PC
 Ensuring correct memory mapping and stack

It works as the last stage of the scheduling decision.

❖ Scheduler: A Conceptual View
 Maintains Ready Queue and Waiting Queue
 Chooses next process to run based on policy (FCFS, Round-Robin, etc.)
 May use priority, fairness, deadlines, or aging
 Manages CPU-bound and I/O-bound process balance

 Modern schedulers also account for:

 Affinity (bind to CPU core)
 Load balancing
 Energy awareness (on mobile)

 Caselet: Zoom + File Sync + Spotify
Scenario:

 Zoom (real-time audio/video)
 File Sync (OneDrive/Dropbox in background)
 Spotify (continuous audio)

CPU Switch Decisions:

 Zoom gets priority due to low-latency needs
 File Sync is I/O-bound → often in Waiting
 Spotify is preempted occasionally

Each context switch occurs in ~1–5μs.

 Visualization of Context Switch Timing
Time →
|----P1----|----P2----|----P3----|----P1----|
 context context context
 switch switch switch
Each vertical switch is a hardware/software interrupt triggering a switch in the kernel.

 In-Class Shell Demo
time ./heavy_process # Observe user vs system vs real time
chrt -p $$ # Show process scheduling priority and policy
cat /proc/sched_debug # Advanced: Linux scheduler metrics (CFS stats)
Optional:

 Use top → press H to show threads
 Observe frequent context switches on multi-threaded apps

 Glossary of Terms
Term Definition

Context Switch Switching CPU from one process to another

Scheduler OS module selecting which process runs next

Dispatcher Loads process context into CPU

Preemption Forcibly interrupting a process to run another

Affinity Binding a process to specific CPU cores

CFS Completely Fair Scheduler used in Linux

 Exploration Topics
 Thread vs process context switches (cheaper?)
 How Linux handles context switch overhead (perf, /proc)
 Investigate sched_setaffinity and nice
 Compare time slices in real vs embedded OSes
 Explore multi-core scheduling strategies

✅ Summary
 Context switching is essential for multitasking
 The PCB stores all necessary process state
 The dispatcher performs the low-level switch
 The scheduler decides who gets the CPU and when
 Frequent context switches increase responsiveness but may reduce cache locality

✍ Review & Exercises
1. List the steps involved in a context switch
2. What fields in the PCB are used during a switch?
3. Write a small C program with 2 forked processes and observe their CPU usage
4. What’s the overhead of a context switch? How can we measure it?
5. Observe context switches in top or vmstat
6. Challenge: Implement a cooperative scheduler using setjmp/longjmp in user space

