
Operating Systems – Week 3 Lecture Notes
Instructor: SDB
Theme: Execution Management
Topic: Process Concepts, Process Control Block (PCB), and Process Lifecycle

 Lecture Script
Welcome back to our deep dive into execution management.

Last week we saw how system calls allow programs to interact with the kernel. Today, we turn our attention to
the fundamental entity the OS manages: the process.

If the OS is a traffic manager, then processes are the vehicles — each with its own destination, fuel, speed, and
identity. And the OS needs to track and switch between thousands of them without crashing.

Let’s understand what a process is, how it's represented internally, and how it flows through different states in
its lifetime.

 Core Concepts and Definitions
❖ What is a Process?
Definition: A process is an executing instance of a program, encapsulating:

 Code
 Data
 Execution state
 Allocated resources (memory, open files, etc.)

It is created, scheduled, and managed by the OS.

❖ Program vs Process
 A program is passive (e.g., a .c file or binary).
 A process is active, with its own program counter, stack, and execution context.

 Multiple processes can run the same program (e.g., 5 tabs in Chrome).

❖ Process States

State Description

New Process is being created

Ready Waiting to be scheduled

Running Actively executing on the CPU

Waiting Blocked (e.g., waiting for I/O)

State Description

Terminated Finished execution

These transitions are managed by the scheduler and system events.

❖ Process Control Block (PCB)
Definition: The PCB is a kernel data structure that stores everything the OS needs to manage a process.

Contents include:

 Process ID (PID)
 Process state
 Program counter (PC)
 CPU register values
 Scheduling info (priority, time slices)
 Memory info (base, limit, stack pointers)
 Open files and I/O resources
 Accounting info (CPU time used, UID, etc.)

 It’s like a passport and black box of a process.

 Caselet: A Browser Tab
Each Chrome tab runs in its own process:

 Has its own memory, state, open file handles (network sockets)
 If one crashes, others stay safe
 OS tracks each using a separate PCB
 The scheduler decides which tab (process) gets CPU next

 Process Lifecycle Diagram (Textual)
+--------+ admit +--------+ dispatch +--------+
| New | ------------> | Ready | ---------------> | Running|
+--------+ +--------+ +--------+
 ^ | |
 | | interrupt, time-out |
 I/O complete | +--------------------------+
 or child exit | |
 v v
 +--------+ +----------+
 | Waiting| <----------------- | Terminated|
 +--------+ I/O wait +----------+

 Shell Demo (In-Class)
ps -ef | grep bash # Observe multiple bash processes
sleep 120 & # Background process creation
ps -p <pid> -o pid,ppid,stat,cmd
cat /proc/<pid>/status # Inspect PCB fields (indirectly)
Optional: Run top, identify state transitions in real-time.

 Glossary of Terms
Term Meaning

Process Running instance of a program

PCB Process metadata managed by the OS

Context Switch Saving/restoring process CPU state

Zombie Terminated, not yet reaped process

Orphan A process whose parent exited

Fork Clones a process

Exec Replaces current process memory with new code

 Exploration Topics
 Threads and multithreaded processes
 Fork bomb and process limits (ulimit -u)
 /proc/[pid]/ virtual filesystem
 Process namespaces and containers
 How Windows and Linux differ in PCB layout

✅ Summary
 A process is the basic unit of execution.
 The PCB stores all critical metadata to track, switch, and manage a process.
 A process transitions between states: new → ready → running → waiting → terminated.
 The OS uses scheduling queues to manage transitions and CPU allocation.

✍ Review & Exercises
1. Draw and label a complete process lifecycle diagram
2. Explain all fields in a PCB and their role in context switching
3. Differentiate program vs process with examples
4. Use ps, sleep, top, and /proc to observe real-time state transitions
5. Write a C program using fork() and observe two concurrent processes
6. What is a zombie? How is it created and removed?
7. Challenge: Create 10 background processes and monitor their behavior

