
Operating Systems – Week 2 Lecture Notes
Instructor: SDB
Theme: Execution Management
Topic: System Calls and OS Structures

 Lecture Script
Welcome to Week 2!

Today, we’ll get technical — we’ll see how user programs request services from the OS via system calls, and
how the OS is structured internally to handle those requests.

Think of a system call as a “doorway” into the kernel. When a user program wants to read a file, create a
process, or allocate memory, it must use a system call — no exceptions.

We’ll also look at different OS structure designs — how monolithic vs layered vs microkernel systems differ in
handling those calls.

Let’s start with system calls.

 Core Concepts and Definitions
❖ What is a System Call?
A system call is the primary mechanism through which user-mode programs request services from the
kernel.

It triggers a controlled transition from user mode to kernel mode, executes the service, then returns.

❖ How System Calls Work
1. Application code calls a library function (e.g., printf())
2. Library internally invokes a system call (e.g., write())
3. A trap instruction causes a switch to kernel mode
4. Kernel identifies the syscall number and dispatches the handler
5. Execution returns to user mode with results

 Common Process-Related System Calls
System Call Purpose

fork() Create a new child process (clone of parent)

exec() Replace current process memory with new program

wait() Parent waits for child to terminate

exit() Terminates process and returns status

 Example: Running ls
What happens when you type ls in the shell?

shell (parent)
 ├── fork() → child process
 └── child calls exec("ls")
 └── kernel loads /bin/ls into process memory
 └── ls executes, exits, status returned to shell (via wait())
Each step involves a system call.

 Live Trace Demo with strace
strace ls
Shows syscall-level trace:

execve("/bin/ls", ["ls"], ...) = 0
brk(NULL) = 0x...
openat(AT_FDCWD, ".", O_RDONLY|...)
...
Use this in class to show real-time kernel boundary crossings.

 OS Structural Models
❖ Monolithic Kernel

 All OS components (file systems, device drivers, schedulers) run in kernel space.
 Fast but harder to maintain.

Example: Traditional Linux

❖ Layered OS
 OS is divided into layers: hardware interface at bottom, user interface at top.
 Each layer can call services only of the lower layer.

Example: THE OS (classic educational model)

❖ Microkernel
 Minimal kernel: only process mgmt, memory, IPC in kernel.
 Other components (drivers, FS, servers) in user space.

Example: Minix, QNX, modern macOS kernels (hybrid)

 Glossary of Terms
Term Definition

System Call Interface for invoking OS services from user space

Trap CPU instruction to switch to kernel mode

Kernel Mode Privileged mode of execution

User Mode Restricted mode for user applications

Fork System call to create a process

Term Definition

Exec Replaces process memory with a new program

Microkernel Minimal kernel architecture pushing components to user space

Monolithic All OS code resides in a single kernel address space

 Live Demos and Exercises (In-Class)
strace ls # Show system call sequence
man 2 fork # Review manual page of syscall
gcc fork_demo.c -o fork_demo # Run sample C fork/exec/wait code
Optional code snippet for demo:

int main() {
 pid_t pid = fork();
 if (pid == 0) {
 execlp("ls", "ls", NULL);
 } else {
 wait(NULL);
 }
 return 0;
}

 Exploration Topics
 How syscall tables are implemented (syscall numbers)
 How syscall wrappers work in libc
 Kernel-bypass systems: DPDK, RDMA
 Compare IPC in monolithic vs microkernel systems
 Research syscall overhead benchmarks

✅ Summary
 System calls bridge user programs to the kernel
 fork(), exec(), wait(), and exit() are foundational
 OS structures vary in modularity and performance trade-offs
 Tools like strace make syscall behavior observable and teachable

✍ Review & Exercises
1. Draw the control flow of fork → exec → wait → exit
2. What happens if a program calls exec() but not wait()?
3. Write a C program that forks and prints child/parent PIDs
4. Trace system calls in a GUI app (strace gedit)
5. Compare microkernel vs monolithic with 2 pros and cons each
6. Try modifying a shell to log each syscall invoked (advanced)

