
Operating
Systems

Structure, Execution, Coordination

Core Modules

OS Fundamentals

o Definitions, goals, evolution

o System structure, kernel vs user

mode, system calls

Process & Thread Management

o Lifecycle, context switching,

threading models

CPU Scheduling

o Algorithms (FCFS, SJF, RR,

Priority, MLFQ), evaluation

metrics

Synchronization & Deadlocks

o Semaphores, monitors, classical problems, deadlock

strategies

Memory Management

o Paging, segmentation, virtual memory, page

replacement

File Systems & Storage

o File structure, allocation, directories, disk scheduling

Virtualization & Containers

o VMs, hypervisors, Docker/LXC, namespaces, cgroups

6/26/2025 2

Faculty-wise Thematic Division

Execution Management

(SDB)

Resource Management

(SSB)

Coordination & Modern OS

(RD)

• OS intro, services, system

calls

• Process lifecycle, PCB,

context switching

• Thread types and libraries

• CPU scheduling algorithms

• Case studies: Linux CFS,

Windows Scheduler

• Memory: Allocation, Paging,

Segmentation

• Virtual memory, page

replacement strategies

• File systems: ext2/ext4, FAT,

NTFS

• Disk scheduling, RAID, directory

mgmt

• IPC: Shared memory,

message passing

• Synchronization:

Semaphores, monitors

• Classical concurrency

problems

• Deadlocks: prevention,

avoidance, detection

• Virtualization & containers:

Docker, LXC

Sample Weekly Progression (Indicative)

Week Range Focus Areas Labs/Practicals

1–4 OS intro, system calls,
processes, memory
basics

System call tracing, simple
allocators

5–8 Threads, scheduling,
paging, synchronization

Thread creation,
scheduler sim,
semaphores

9–12 Deadlocks, file systems,
virtualization

File system layout demo,
deadlock simulation,
Docker run/labs

Mid-course Project Ideas - Thematic

Execution Management

• Mini Shell:
Implement fork, exec,
wait

• CPU Scheduler
Simulator: FCFS, SJF,
RR, Priority with
visualization

• Thread Pool
Executor: Simulate
task queuing with
multiple threads

Resource Management

• Memory Allocator
Simulator: First-fit, best-fit
with memory compaction

• Virtual Memory
Visualizer: Page table +
TLB + page fault
animation

• FUSE Filesystem
Skeleton: Implement
basic file ops in user
space

Coordination & Modern Systems

• Producer-Consumer

Simulation: Semaphore-

guarded multithreaded buffer

• Deadlock Analyzer: RAG

simulation + cycle detection

• Container Runtime Monitor:

Docker resource control with

cgroup inspection

Final Capstone Project Ideas I

• Multitasking OS Kernel Emulator: Simulate processes, scheduling, memory, and

I/O in a user-mode kernel model

• Container-Aware Resource Allocator: Build a mock cgroup-like resource controller

for CPU, memory

• Lightweight Hypervisor Simulator: Simulate basic VM scheduling over host

CPU/memory using hypercalls

• Paging & Swapping Engine with Visualization: Simulate working set, page faults,

swapping to disk

• System Behavior Profiler: Analyze /proc, /sys, and I/O logs to infer live system state

in Linux

Final Capstone Project Ideas II

• User-Level Multitasking Environment: Combine process/thread simulation
with scheduling and memory modules.

• Educational OS Kernel Emulator: Simulate basic OS behaviors: process
state mgmt, memory access, I/O scheduling.

• Lightweight Container Runtime: Build a small container launcher using
Linux namespaces and cgroups with process isolation.

• Virtual Memory and Swap Emulator: Model how virtual memory and
paging interacts with disk, with visualization.

• Kernel-Level Log Analyzer: Analyze /proc and /var/log to reverse-engineer
process and memory behavior in real Linux systems.

What You'll Learn

• OS design, internals, and practical constraints

• Writing, debugging, and scheduling concurrent programs

• Managing system resources securely and efficiently

• Operating systems' role in modern computing platforms
(cloud, mobile, embedded)

• Preparing for roles in systems programming, devops,
embedded OS, and low-level security

	Slide 1: Operating Systems
	Slide 2: Core Modules
	Slide 3: Faculty-wise Thematic Division
	Slide 4: Sample Weekly Progression (Indicative)
	Slide 5: Mid-course Project Ideas - Thematic
	Slide 6: Final Capstone Project Ideas I
	Slide 7: Final Capstone Project Ideas II
	Slide 8: What You'll Learn

