Operating
Systems .

4 »
/. */ - v‘./

Structure, Execution, Coordination » .2z~ ~

-

e P
: N /
- \
* SV 7\
Y 4 ; : :
'
7 »
/ 7,
y/
-~
/
-

Core Modules

OS Fundamentals
o Definitions, goals, evolution
o System structure, kernel vs user
mode, system calls
Process & Thread Management

o Lifecycle, context switching,
threading models

CPU Scheduling

o Algorithms (FCFS, SJF, RR,
Priority, MLFQ), evaluation
metrics

6/26/2025

Synchronization & Deadlocks

o Semaphores, monitors, classical problems, deadlock
strategies

Memory Management

o Paging, segmentation, virtual memory, page
replacement

File Systems & Storage
o File structure, allocation, directories, disk scheduling
Virtualization & Containers

o VMs, hypervisors, Docker/LXC, namespaces, cgroups

Faculty-wise Thematic Division

Execution Management Resource Management Coordination & Modern OS
(SDB) (SSB) (RD)
« OSintro, services, system * Memory: Allocation, Paging, « |PC: Shared memory,
calls Segmentation message passing
* Process litecycle, PCB, * Virtual memory, page * Synchronization:
context switching replacement strategies Semaphores, monitors
* Thread types and libraries » File systems: ext2/ext4, FAT, » Classical concurrency

« CPU scheduling algorithms NS Rlcelein:

« Disk scheduling, RAID, directory + Deadlocks: prevention,

« Case studies: Linux CFS, , ,
mgmt avoidance, detection

Windows Scheduler
* Virtualization & containers:
Docker, LXC

Sample Weekly Progression (Indicative)

Week Range Focus Areas Labs/Practicals

1-4 OS intro, system calls, System call tracing, simple
processes, memory allocators
basics

5-8 Threads, scheduling, Thread creation,
paging, synchronization scheduler sim,

semaphores

9-12 Deadlocks, file systems, File system layout demo,

virtualization deadlock simulation,

Docker run/labs

Mid-course Project Ideas - Thematic

Execution Management

Mini Shell:
Implement fork, exec,
wait

CPU Scheduler
Simulator: FCFS, SJF,
RR, Priority with
visualization

Thread Pool
Executor: Simulate
task queuing with
multiple threads

Resource Management Coordination & Modern Systems
* Memory Allocator Producer-Consumer
Simulator: First-fit, best-fit Simulation: Semaphore-
with memory compaction guarded multithreaded buffer
Virtual Memory Deadlock Analyzer: RAG

Visualizer: Page table +

imulation + cycl tection
TLB + page fault simulation + cycle detectio

animation « Container Runtime Monitor:
FUSE Filesystem Docker resource control with
Skeleton: Implement cgroup inspection

basic file ops in user

space

Final Capstone Project Ideas |

- Multitasking OS Kernel Emulator: Simulate processes, scheduling, memory, and
/O in a user-mode kernel model

- Container-Aware Resource Allocator: Build a mock cgroup-like resource controller
for CPU, memory

* Lightweight Hypervisor Simulator: Simulate basic VM scheduling over host
CPU/memory using hypercalls

« Paging & Swapping Engine with Visualization: Simulate working set, page faults,
swapping to disk

« System Behavior Profiler: Analyze /proc, /sys, and I/O logs to infer live system state
in Linux

Final Capstone Project Ideas ||

« User-Level Multitasking Environment: Combine process/thread simulation
with scheduling and memory modules.

« Educational OS Kernel Emulator: Simulate basic OS behaviors: process
state mgmt, memory access, I/0O scheduling.

 Lightweight Container Runtime: Build a small container launcher using
Linux namespaces and cgroups with process isolation.

* Virtual Memory and Swap Emulator: Model how virtual memory and
paging interacts with disk, with visualization.

« Kernel-Level Log Analyzer: Analyze /proc and /var/log to reverse-engineer
process and memory behavior in real Linux systems.

What You'll Learn

» OS design, internals, and practical constraints
» Writing, debugging, and scheduling concurrent programs
* Managing system resources securely and efficiently

» Operating systems' role in modern computing platforms

(cloud, mobile, embedded)

* Preparing for roles in systems programming, devops,
embedded OS, and low-level security

	Slide 1: Operating Systems
	Slide 2: Core Modules
	Slide 3: Faculty-wise Thematic Division
	Slide 4: Sample Weekly Progression (Indicative)
	Slide 5: Mid-course Project Ideas - Thematic
	Slide 6: Final Capstone Project Ideas I
	Slide 7: Final Capstone Project Ideas II
	Slide 8: What You'll Learn

