1 Prerequisite

1.1 Introduction to Unix System Programming

This assignment introduces fundamental concepts in Unix/Linux system programming,
essential for understanding how processes are created, managed, and how they interact.
These concepts form the bedrock for more advanced topics like inter-process commu-
nication, synchronization, and memory management, which you will explore in later
assignments.

1.1.1 The Shell Environment

Before diving into programming, it’s crucial to be comfortable with the Linux command-
line interface.

Basic Commands Review: 1s, cd, pwd, mkdir, rm, cp, mv.
File Permissions: Understanding chmod, chown, and chgrp.
Process Management Commands: ps, top, kill, pkill.
Input/Output Redirection: >, >> < |.

Environment Variables: echo $PATH, export, set.

1.2 Process Creation and Management

Understanding how new processes are created and managed is fundamental to multi-
process programming.

1.2.1 The fork() System Call

The fork() system call is used to create a new process, known as the child process, which
is a near-identical copy of the calling process (parent process).

e Basic fork() Operation:

— Creates a child process under the parent process.

— The child process begins execution immediately after the fork() call.

— If there are n fork() calls, 2" processes will be created.

— Both parent and child processes are independent, each with its own Process
ID (PID), and can exist concurrently.

e Return Values of fork():

— To the parent process, fork() returns the PID of the child.

— To the child process, fork() returns 0.

— If fork() fails (e.g., due to memory problems), it returns —1.
e getpid() and getppid():

— getpid ) returns the PID of the process from which it is called.

— getppid () returns the PID of the parent of the process from which it is called.
e Process Memory and Variables with fork():

— fork() creates two identical processes, but they are completely independent.
— Both processes share the same variables, but each has its own copy of these
variables. Modifications to variables in one process do not affect the other.



1.2.2 Orphans and Zombies

These are special states that processes can enter due to the asynchronous nature of
parent-child relationships.

e Orphan Processes:

— An orphan process occurs when the parent process terminates before its child
process.

— The orphaned child is immediately adopted by the init process (process dis-
patcher), which typically has PID 1.

— In Unix, ps -1 might show 'O’ in the second column for an orphan process,
though Linux generally does not identify orphan processes this way.

e Zombie Processes:

— A zombie process is a process that has terminated but remains in the process
table because its parent has not yet read its exit status.

— In Unix, ps -1 shows 'Z’ in the second column for a zombie process.

— Zombie processes consume minimal system resources (only a process table
entry), but too many can be problematic. The parent process must call wait ()
or waitpid() to clear the zombie.

1.2.3 The exec() System Call Family

The exec() family of system calls replaces the current process image with a new process
image specified by a program file.

e Purpose: exec() loads a new program into the current process’s memory space
and begins its execution.

e Key Difference from fork(): Unlike fork(), exec() does not create a new
process; it transforms the existing one. The PID of the process remains the same.

e execl() and execv():

— execl() takes the path to the new program, followed by a list of arguments
(including the program name itself), terminated by a NULL pointer.

— execv() takes the path to the new program and an array of strings for argu-
ments, where the array is terminated by a NULL pointer. This provides more
flexibility for command-line parameters.

e Program Flow After exec(): Any code in the calling program after a successful
exec () call will not be executed, as the current process image is entirely overwritten.

1.3 Interprocess Communication (IPC) - Signals

Signals are a basic form of interprocess communication, often used for event notification.

1.3.1 Introduction to Signals

e Processes need to communicate with each other.

e In Unix, processes can send and receive signals to communicate.

e Signals are asynchronous notifications sent to a process to indicate that an event
has occurred.



e Signals can be generated by the kernel (e.g., when a key is pressed, or an illegal
operation occurs) or by other user processes.

1.3.2 Signal Handling with signal ()

The signal() system call allows a process to specify how it will respond to certain
signals.

e signal (SIGNAL, HANDLER) ():

— The first parameter is the SIGNAL to trap (e.g., SIGINT for Ctrl4+-C, SIGILL
for illegal instruction). These are defined in <signal.h>.

— The second argument is the HANDLER function to invoke when the signal is
generated.

e Default Action (SIG.DFL): If no custom handler is specified, the kernel performs
a default action (e.g., program termination for SIGINT).

e Ignoring Signals (SIG_IGN): A process can be instructed to ignore a specific signal
by passing SIG_IGN as the handler.

e Re-registering Handlers: After a signal handler is executed, it is often cleared
from memory. To ensure subsequent signal occurrences are still handled, the
signal() call must be re-registered within the handler function itself (recursive
call).

e SIGINT vs. DEL key: On Linux, SIGINT is typically generated by Ctrl-C, not
the DEL key.

e Common Signals for Error Handling: SIGILL (illegal instruction), SIGFPE
(floating-point exception).

1.3.3 Process Termination and SIGCLD

e When a process terminates, it sends a SIGCLD signal to its parent.

e If the parent is the shell, upon receiving SIGCLD, the shell deletes the corresponding
process entry from the process table.

e Programs can trap SIGCLD to perform actions when a child process terminates.

1.3.4 Sending Signals Between Processes with kill()

e Signals can be sent between two user processes using the kill() system call.
e kill(PID, SIGNAL) ():

— The first argument is the Process ID (PID) of the target process.
— The second argument is the SIGNAL to send.

e User-Defined Signals: SIGUSR1 and SIGUSR2 are two user-programmable sig-
nals not mapped to any specific keys, making them ideal for custom inter-process
communication.

1.4 Interprocess Communication (IPC) - Message Queues

Message queues allow processes to exchange messages (like text conversations).



1.4.1 Introduction to Message Queues

e Unlike signals (which have predefined values and are event-driven), messages are
user-defined and are exchanged for conversation between processes.

e A message queue acts as a mailbox where messages are queued for delivery until
retrieved by the receiving process.

1.4.2 Creating and Managing Message Queues with msgget () and msgctl ()
e msgget () (Create/Access):

— Creates a new message queue or gets the ID of an existing one.

— Takes two arguments: a key_t value (the queue’s name/key) and a flag.

— Flags:

% IPC_CREAT: Creates the queue if it doesn’t exist. Ignored if it does.

x IPC_EXCL: Used with IPC_CREAT to force an error if the queue already
exists (exclusive mode).

« Permissions (e.g., 0644 for rw-r—r—): Specified in ugo notation and ORed
with other flags.

— Returns the message queue ID (msqid) on success, or -1 on failure.

— Permission Note: Once a queue is created with specific permissions, it
should be accessed with the same or a subset of those permissions. ORing
IPC_CREAT with O can avoid errors when accessing an existing queue with un-
known permissions.

e ipcs —-q (Inspect Queues): Command-line tool to view existing message queues
and their properties.
e msgctl() (Control/Delete):
— Used to perform operations on a message queue, including deletion.
— msgctl(msqid, IPC_RMID, 0): Deletes the message queue identified by msqid.
The last argument must be 0 for deletion.

1.4.3 Sending Messages with msgsnd ()
The msgsnd () system call sends a message to a message queue.

e msgsnd(msqid, &message_struct, message_length, flags) ():

— msqid: The message queue identifier.

— &message_struct: Starting address of the message data structure. This struc-
ture typically includes a long mtype (message priority) and char mtext[]
(the message content).

— message_length: Length of the actual message string (mtext).

— flags:

x 0: Process waits if the queue is full until space becomes available.
% IPC_NOWAIT: Process terminates immediately if the queue is full.

1.4.4 Receiving Messages with msgrcv()
The msgrcv() system call receives a message from a message queue.

e msgrcv(msqid, &buffer_struct, max message_length, message_type, flags) ():

>



— msqid: The message queue identifier.
— &buffer_struct: Address of the buffer structure to store the received message.
— max_message_length: The maximum length of the message to receive. This
should be equal to or greater than the actual message length to avoid errors.
— message_type: The priority of the message to receive. Only messages with a
matching priority are accepted.
— flags:
x 0: Process waits if the queue is empty until a message of the desired type
and permission arrives.
x IPC_NOWAIT: Process does not wait if the queue is empty.
* MSG_NOERROR: ORed with other flags, it prevents an error if the received
message length exceeds max message_length; instead, it truncates the
message.

1.5 Interprocess Communication (IPC) - Semaphores

Semaphores are data structures used for process synchronization, especially when access-
ing shared resources.

1.5.1 Introduction to Semaphores

e Semaphores help synchronize several processes accessing a common resource.

e They can be created and managed similarly to message queues.

e Semaphores are created in sets, with a maximum of 10 sets, each containing up to
25 semaphores.

e ipcs -s (Inspect Semaphores): Command-line tool to list available semaphores
and their properties.

1.5.2 Creating and Managing Semaphores with semget () and semctl ()

e semget () (Create/Access):

— Creates a semaphore set or gets the ID of an existing one.
— semget (key, num semaphores, flags) ():

* key: The key or name of the semaphore set. All semaphores in a set have
the same key value.
% num_semaphores: The number of semaphores to create in that set.
*x flags:
- IPC_CREAT: Creates the semaphore set if it doesn’t exist.
- IPC_EXCL: Used with IPC_CREAT to create the semaphore in exclusive
mode, returning an error if it already exists.
- Permissions (e.g., 0666): ORed with other constants.

— Permission Note: Any subsequent attempts to access or create the same
semaphore set must use a permission mode that is the same as or a subset of
the original creation permission.

— Number of Semaphores Note: If a set is created with a certain number of
semaphores, subsequent semget () calls for the same set will only succeed if
they specify a number of semaphores less than or equal to the original number.

e semctl() (Control/Delete/Set/Retrieve):

6



— A versatile function used for various semaphore operations.

— Deleting a Semaphore Set: semctl(semid, 0, IPC_RMID, 0).
x semid: The ID of the semaphore set.
* The second and fourth arguments must be 0 for deletion.

— Setting a Semaphore Value: semctl(semid, sem_index, SETVAL, value).

x semid: The ID of the semaphore set.
x sem_index: The index of the individual semaphore within the set whose
value you want to set.
x SETVAL: The operation to perform.
x value: The integer value to set for the semaphore.
— Retrieving a Semaphore Value: semctl(semid, sem index, GETVAL,
0).
semid: The ID of the semaphore set.
sem_index: The index of the individual semaphore within the set.
GETVAL: The operation to perform.
The last argument must be 0.
— Getting PID of Last Setter: semctl(semid, sem_index, GETPID, 0).

* Returns the PID of the process that last performed a semop() (semaphore
operation) on the specific semaphore within the set.

* X ¥

*

1.6 Additional Necessary Topics & Future Considerations

To ensure a strong foundation for future assignments, students should also be familiar
with:

e Makefiles: Essential for managing compilation of multiple source files in C projects.

e Error Handling: Proper use of perror() and checking return values of system
calls for robust programs.

e wait() and waitpid(): Crucial for parent processes to wait for child processes to
terminate and to reap zombie processes.

e Process Exit Status: Understanding how child processes communicate their exit
status to parents.

e Introduction to gdb: A basic debugger is invaluable for tracing program execution
and identifying issues in C programs.

1.7 Prerequisite Assignment Tasks

Students should write C programs for each of the following scenarios to solidify their un-
derstanding. Encourage them to compile and run these programs on their Linux systems
and observe the behavior using commands like ps, ipcs.

1. Fork Bomb (Cautionary Example): Write a program that uses an infinite
loop with fork() to demonstrate the resource consumption and potential system
instability caused by uncontrolled process creation. (Emphasize stopping it with
killall or pkill quickly).

2. Orphan Process Demonstration: Implement Example 2 from the provided text,
demonstrating how a child process becomes an orphan and is adopted by init (PID
1). Use getppid() before and after the parent terminates.

7



3. Zombie Process Demonstration: Implement Example 3 from the provided text,
demonstrating how a child process becomes a zombie until the parent terminates
(or calls wait()). Use ps -1 to observe the 'Z’ status.

4. fork() vs. exec() (PID Comparison): Write a C program that:

e Calls fork() to create a child.

e In the parent, print its PID and the child’s PID.

e In the child, print its PID and its parent’s PID.

e Then, in the child process, use execlp() (a variant of exec() that searches
PATH) to execute a simple command like 1s -1. Observe that the child’s PID
remains the same after exec(), but its program changes.

5. Signal Trapping (SIGINT): Implement the modified Example 1 from subsection A
of Chapter 2 (recursive signal() call) to trap SIGINT (Ctrl+C) and print a custom
message, ensuring the program doesn’t terminate on the first Ctrl-C.

6. Signal Trapping (SIGFPE): Implement Example 2 from subsection A of Chapter
2 to trap SIGFPE (floating-point exception, e.g., division by zero) and call a custom
error handler.

7. Parent-Child Signal Communication (SIGUSR1): Write a program where a
parent forks a child. The child goes to sleep for a short period. The parent sends
SIGUSR1 to the child. The child wakes up upon receiving the signal and prints a
message indicating it received the signal, then exits. The parent waits for the child.

8. Message Queue Communication (Sender & Receiver): Implement the ” As-
signment” task on Page 18:

e Sender Program: Accepts a string input from the console, sends it as a
message to a message queue.

e Receiver Program: Receives the message, displays it, then sends an ac-
knowledgment message back to the sender.

e Sender Program (continued): Upon receiving the acknowledgment, dis-
plays 7 Acknowledgment received from receiver” and then waits for the next
user input.

e Hint: This will require two message queues or careful use of message types to
differentiate between messages and acknowledgments.

9. Semaphore Creation and Value Management:

e Write a program that creates a semaphore set with a specific key and a single
semaphore within that set.

e Set the semaphore’s initial value.

e Retrieve and print the semaphore’s value.

e Retrieve and print the PID of the process that last set the semaphore’s value
using GETPID.

Advanced Topics to Explore (Optional)

For students who grasp these concepts quickly or wish to delve deeper, these topics offer
additional challenges and preparation for future labs.



1.7.1 Pipes (Unnamed and Named)

e Unnamed Pipes (pipe()): Used for one-way communication between related
processes (typically parent-child). Explore how to set up a pipe and use read()
and write().

e Named Pipes (FIFOs - mkfifo()): Allow communication between unrelated
processes. Understand their creation and usage.

1.7.2 Shared Memory (System V IPC)

e Introduction: A faster IPC mechanism where processes map a region of memory
into their address space, allowing direct read/write access.

e System Calls: shmget() (create/access), shmat() (attach), shmdt() (detach),
shmct1 () (control/delete).

e Synchronization: Emphasize the need for synchronization mechanisms (like semaphores)
when using shared memory to prevent race conditions.

1.7.3 Threads (pthreads)

e Introduction: Understand the difference between processes and threads (shared
memory space, lighter weight).

e Basic pthreads: pthread_create(), pthread_join(), pthread_exit().

e Thread Synchronization: Brief introduction to mutexes (pthread mutex_init(),
pthread mutex lock(), pthread mutex unlock()) and condition variables.

1.7.4 Kernel Modules (Basic)

e Introduction: Understanding what kernel modules are and why they are used
(extending kernel functionality without recompiling).

e Basic Module Structure: module_init, module_exit.

e Simple "Hello World” Module: A basic module that prints a message to the
kernel log (dmesg) when loaded and unloaded.



