Unix System Programming

Chapter 1: The fork() and exec() system calls

The fork()

The fork() system call creates child process under the parent process. The child process
starts its execution from the instruction immediately following the fork() call. If there are
nfork() calls, 2" processeswill be created.
An important thing to remember about fork() calls is that all the child processes are
independent processes, each with its own process ID number. Hence, both parent process
as well asthe child process can exist concurrently.

Exanpl e 1:

mai n() {

I nt pid;
pi d=f or k() ;

I f(pid>0) printf(“Child process ID %", pid);

el se printf(“Parent process ID: %", getppid());
}

To the parent process, fork() returns the value of the child’s PID.

The moment a call is made to the fork(), a child process is created. The child copy too,
getsacopy of the variable “pid”, but with avalue of 0 by default.

Thus, the variable “pid” of the child process will aways be zero.

Sometimes, fork() may not create the child process due to some memory problem. In that
case, fork() will return ‘-1’ indicating error.

The getpid() function returns the PID of the process from which it is called. The getppid()
function returns the PID if the parent of the process from which it is called.



Orphans and Zombies

Orphans
Exanpl e 2:
mai n() {
I nt pid;
pi d=f or k() ;
if (pid==0) { // child part
printf(“l amthe child\n”);
printf(“My parent’s PID:. %l\n”, getppid());
printf(“My PID %\ n”,getpid());
sl eep(20); // child put to sleep for 20 sec
printf(“l amthe child, | have becone ORPHAN');
printf(“\nMy PIDis: %", getpid());
printf(“\nMy parent’s PIDis: %", getppid());
} else { /] parent’s part
printf(“\nl amthe Parent & | amdying \n”);
printf(“My PIDis: %l”,getpid());
printf(“\nThe PID of ny parent: %", getppid());
}
}

Here, the child prints the PID of its parent and itself and goes to sleep. In the meanwhile,
the parent continues to execute, it prints the PID of it’s parent (the shell) and its own PID
and terminates.

After 20 seconds, the child wakes up to find that the parent has already terminated. Thus,
the child now becomes an orphan.

Unlike in case of humans, the process dispatcher immediately adopts the orphan child
and hence after dleep(), the child displays its on PID as before but instead of printing the
PID of itsorigina parent, it prints the PID of the process dispatcher asit’s parent through
the getpid() call.

The ps - command in UNIX shows ‘O’ in the second column against the child process,
notifying that its original parent has terminated.

Unfortunately, a ps -I command in LINUX will not show 'O" in the second column,
because, LINUX does not identify an Orphan process.



The following is the output of the above program when | ranin my PIV machine:

| amthe child
My parent’s PID. 3871
My PID: 3872

| amthe Parent & | am dying
My PID is: 3871
The PID of ny parent: 3828

[ AFTER 20 SEC]

| amthe child, | have becone ORPHAN
My PID is: 3872

My parent’s PIDis: 1

As we can see, after the parent does, the process dispatcher, with PID=1 adopts the child.
Hence, after 20 sec, the child printsthe PID of its parent as 1.

Zombies

Zombies are processes that have terminated, but are not removed from the process table.
Let us assume that there is a parent process that creates a child. Both of them now have
an entry in the process table. Lets further assume that the child process gets terminated
well before the parent does. Since the parent process is still in action, the child cannot be
removed from the process table. It therefore exists in the twilight zone and thus becomes
azombie,

L ets take an example:
Exanpl e 3:

mai n() {
I1f (fork()>0) { // parent part

printf(“\nl amthe Parent going to sleep\n”);
sl eep(20); // parent put to sleep for 20 sec

} else { // child s part

printf(“\nl amthe Child & after nmy ”);
printf(“termnation | beconme a zonbie!”);



A command ps -l shows 'Z' in the second column for the child processindicating that it is
azombie,

[ r oot @GXEVELOPMENT root]$ ps -|

FS UDPID PPID CPRI N ADDR SZ WCHAN TTY T ME CVD
0 S 500 3828 3826 0 75 0 - 1081 wait4 pts/O 00: 00: 00 bash
O T 500 4438 3828 0 75 0 335 finish pts/0 00: 00: 00 a. out
1 Z 500 4439 4438 0 75 0 - 0 do_exi pts/O 00: 00: 00 a. out
0 R 500 4448 3828 2 75 0 781 - pts/ 0 00: 00: 00 ps

The above table shows that the child process with PID 4439 is Zombie as was expected.

Kindly note that fork() creates two identical processes but they are totally independent.
The two processes share the same variables but each has its own copy of the variables.
This can be shown by the example:

Exanpl e 4:
mai n() {
I nt 1=10;
i f(fork()>0) {
printf(“\nThe value of i in parent is %”,i);
} else {
I +=10;
printf(“\nThe value of i in child”);
printf(“ after increnmentation is %”,i);
}
}

The ‘exec()’ system call

We start with an example to illustrate the exec() function and its differences with fork().
Exanpl e 5
exl.c
mai n() {
printf(“\nBefore exec ny PID: %", getpid());
printf(“\nMy parent’s PID: %", getppid());

printf(“\nExec Starts ...");
execl (“/root/ex2”,”ex2”,(char*)0);



printf(“\nThis should not print ...\n");

}

ex2.c

mai n() {
printf(“\nAfter exec, ny PID %", getpid());
printf(“\nMy Parent PID: %", getppid());
printf(“\nExec ends\n");

}

Compile the two programs as:

[ root @XEVELOPMVENT root]$ cc —oexl exl.c
[ root @EVELOPMENT root]$ cc —oex2 ex2.c

That is, the binary files for the two programs should be separately compiled into
independent files.

Now, let us analyze this program:

Ex1.c is the main program that calls the ex2 program through the exec() system call.
First, it prints the process ID of itself and it's parent. Next, it calls the ex2 program
through the execl() system call. This function takes a number of arguments depending
upon what parameters we want to pass to the newly called process. The first argument is
the path of the ex2 program, i.e., the directory where ex2 resides. The next argument is
the name of the program itself, here “ex2”. The subsequent arguments are the command
line parameters that are passed to ex2. The last argument isalwaysaNULL.

After the call to execl(), the memory space previously occupied by ex1 is overwritten by
ex2 program and thus, any code that exists in ex1 program, after the call to execl() never
get executed. Here, the printf() function is never called. Instead, the main() of ex2 get
executed.

The above program when run in my system gives:
[ root @XEVELOPMVENT root]$ ./exl

Before exec ny PID. 3931
My parent’s PID: 3816

After exec, ny PID: 3931
My Parent PID: 3816



Exec ends
It is clear from the above output that unlike fork(), execl() does not create an independent
process. The PID of the old and the new process is same, indicating that the memory
space occupied by the old process is completely overwritten by the new process and the
old process no longer hasitsindividual existence.
To better understand execl () call, we take another example:
Exanpl e 6

exl.c

mai n(int argc, char* argv[]) {

[l print PID s here ...
execl (argv[1],argv[2],argv[3],argv[4],(char*) 0);
printf(“\nThis should not print\n”);

}

ex2.c

mai n(int agc, char* argv[]) {

printf(“\nChild process after exec() call is %”,argv[0]);
printf(“ & its argunents are: % %\n”,argv[1l],argv[2]);

Run ex1 as.

[ root @XEVELOPMVENT root]$ ex1l /root/ex2 ex2 Hello World
Here, for ex1 we have:

argv[ 0] =" ex1”

argv[ 1] ="/ root/ex2”
argv[ 2] =" ex2”
argv[ 3] ="Hel | 0”
argv[4]="Worl d”

So, essentially acall to execl() from ex1.c can be written as:



execl (“/root/ex2”,”ex2”,"Hello”,”Wrld’, (char*)0);
Thus, “Hello” and “World” are the two arguments that are passed to main() of ex2.

Inex2,
argv[ 0] ="ex2” & argv[1l]="Hello” & argv[2]="Wrld”

which gets printed using printf() call.

The execv() call:

We can use ‘execv()’ call instead of execl().
To use execv() in the previous ex1.c program, we modify it as follows:-
Exanpl e 7
mai n(int argc, char * argv[]) {
char *tenp[4];

tenp[ O] =argv[ 2];
tenp[ 1] =argv[ 3] ;
t enp[ 2] =ar gv[ 4] ;
tenp[ 3] =(char*) 0;

[l print PID s here ...
execv(argv[1],tenp);

printf(“This should not print \n”);
}

Thus, instead of separately specifying the called program along with it’s command line
parameters, we put them in an array and specify the name of the array instead. Thus, we
prevent hard coding of passed parameters. This brings flexibility in specifying number of
arguments to called program as well as run time adjustments.



Chapter 2: Interprocess Communication
In this chapter, we will address the following topics sequentially:-

Signal Passing and Signal trapping
M essage Passing
Semaphores

Section A: Signal Passing and Signal Trapping

In any operating system, the different processes need to communicate with each other and
processes in general, do not function in isolation. We human beings use different facial
expressions as signals to communicate different thoughts, moods etc.

In Unix too, similarly, processes can send each other signals and communicate with each
other. For example, say process A has finished processing some data, it may send some
signals to process B. Process B will also receive the output of the processed data from
Process A. based on this output, process B has to decide what response to give.

In Unix, we use the signal() system call to either trap system generated signals at
specified occurrence of events or even to communicate between two user programs.

Let us say for example that we want to trap the ‘DEL’ key. Each time this key is pressed
while a program is run, instead of termination of he current running program, we want
that some other user defined function gets executed.
We write the program as follows:-

Exanpl e 1:

#i ncl ude <signal . h>

mai n() {

printf(“Press DEL key \n");
signal (SI G NT, abc);

for(;;) // loop forever

}
void abc() {

printf(“\nYou pressed the DEL key \n”);
}

The first parameter passed to signal() function is te SIGNAL that we want to trap, in this
case the signal that kernel generates when DEL key is pressed. SIGINT is the signa



generated and is defined in signal.h. The second argument is the name of the function we
want to invoke when the specified signal is generated, here the function abc().

Kindly note that pressing the DEL key twice DOES terminate the program. This is
because, the first time DEL is pressed, function abc() is executed and immediately
cleared from memory. Subsequent pressing of the DEL key can’'t find the function abc()
in memory and hence the default code is executed (SIG_DFL) and this terminated the
program.

To keep the function abc() in memory we modify it as follows:-

voi d abc()

{
printf(“\nYou pressed the DEL key \n");

si gnal (SI G NT, abc);
}

A recursive signal() call loads abc() back in memory.

What if we wanted this program to ignore the DEL key altogether? Simple! We call the
signal() function from main as follows:

signal (SIG NT, SIG | GN)

SIG_IGN is a symbolic constant passed to signal() function that instructs the current
processto ignore the SIGINT signal.

What if we wanted to write our own custom error handler when any illegal instruction is
executed (such as division by zero)? The signal that is generated by the kernel when an
illegal operation takes place is the SIGILL signal (defined in signal.h) and we can trap
thissignal to write our own errorhandler.

Exanpl e 2:
void main() {
I nt |=0;)=50;
signal (SI G LL, errorhandl er);
=11 /1l division by zero, illegal operation

}

voi d errorhandl er(int signalno) {
/1 handl e error wth signal nunber signal no
}



An Important Note:

If you are using Linux (RedHat 6/7/8/9) then this operating system DOES NOT support
use of the DEL key for program termination (& generation of SIGINT signal). Instead,
usethe 'ctrl-c' key to generate SIGINT signal trap.

Further, for illegal floating point exception handling, trap and use the SIGFPE signal
instead.

See the Appendix for afull list of al the available signals under Linux.



Process Termination

A process, when terminates, sends asignal to its parent. This parent, if shell, on receiving
the signal proceeds the delete the entry for the corresponding process from the process
table. The signal sent is SIGCLD.

Even if a forked child dies, it intimates the parent by sending the same signal. Let us
Illustrate this by an example.

Exanpl e 3:

#i ncl ude <stdio. h>
#i ncl ude<si gnal . h>

voi d abc();

int pid,i;

mai n() {
pi d=f ork();
i f(pid==0) sleep(l);
el se {

signal (SIGCLD, abc);
for(i=0;i<1000;i ++);
printf(“\nParent exiting!\n”);

}

}

voi d abc() {
printf(“\nValue of i is %",i);
printf(“\nChild D ed'\n");
getchar ();

}

This program first forks a child and then puts the child for sleep into 1 second. In the
meanwhile, the parent continues to execute the for loop. When the child terminates, the
child send a SIGCLD signal to the parent. The parent, on receiving this signal calls the
abc() function which prints the value of the counter i.

Signals passed between two processes

All the while we have seen communication between the kernel and a user process. The
SIGINT was the signal generated by kernel when we press the DEL key. In our program
we trapped this signal to invoke our own user defined function abc().



However, signals can also be passed between two user processes as well. The system call
kill() isused to send a signal to a process and the receiving process uses the usual signal()
call to trap thissignal.

The kill() system call takes two arguments. The first argument is the process-id of the
process to which we want to send the signal. The second argument is the signal itself
definedinsignal.h

So, we have a process that sends a signal and a process that receives the signal.
Depending upon the signal sent, the receiving process proceeds to take some action.

Normally, this type of communication takes place between the parent and the child since
the pid of the parent is known to the child and vice-versa. We take an example:-

Exanpl e 4:

#i ncl ude<si gnal . h>
voi d abc();

mai n() {

I nt pid;
pi d=fork();
I f(pid==0) { /1 child side
si gnal (SI G NT, abc) ;
/1 child on receiving signal SIG NT
/'l invokes function abc
sl eep(2);
} else { /'l parent side
Kill (pid,SIGNT);
/'l sends signhal SIA@NT to child
sl eep(5);
printf(“Parent Exiting\n");

}
}
voi d abc() {

printf(“Signal received by child!/'!\n");
}

Here, we use the predefined SIGINT signal, which is infact, mapped to the DEL key.
However, there are two user programmable signals that are not mapped to any KEY and
can be effectively used to send signals across processes and invoke user defined
operations. They are SIGUSR1 and SIGUSR?2 that have values 16 & 17 respectively. For
all programming purposes, we must use these two signals and keep the predefined signals
like SIGINT reserved for their specific purpose for which they are defined.



Section B: Message Passing Across Processes

Unlike signals, which have predefined values and are al defined in signal.h, messages are
like text conversation between any two processes. Signals are generated in response to an
event (such as pressing of the DEL key). Messages on the other hand are exchanged
between two processes which need to converse with each other. All messages are user
defined and does not have any predefined values.

Before we can exchange messages between two processes, we need to create a message
gueue where the messages will be queued up for delivery. This is the place from where
the recelving process can obtain the sent messages. A message queue is more like a
mailbox, or like the inbox of our email accounts. Mails sent by different people are
gueued up in our mailbox until view the emails and decide to delete them one after
another.

Message queues are created using the msgget() system call. It takes two arguments; the
name of the queue, also known as the key and a flag. The flag can have the following
values:

IPC_CREAT which instructs to create the message queue if it does not exist. If it does
exist with the specified key value, then this keyword isignored.

IPC_EXCL which creates the message queue in exclusive mode. That means when it is
OR'’ed with IPC_CREAT, it forces an error message when the queue with the specified
name (key value) already exists.

Along with any one or both these constants, we also specify the queue permission in the
usual ‘ugo’ notation (for example 644 means rw- r-- r-- permission). The permission
specifier is ORed with the existing flag constants. Note that an execute permission for a
message queue does not make sense since it is not a piece of executable code.

Let isillustrate what we have said by a simple example:-

Exanpl e 5:
#i ncl ude <sys/types. h>

#i ncl ude <sys/ipc. h>
#i ncl ude<sys/ nsg. h>

mai n() {
I nt nsqi d;
key t key=15;
nmsqi d=nsgget (key, | PC_CREAT| 0644) ;
I f (nmsqi d<0)
perror(“nmsgget failed!”);
el se

printf(“\nMessage queue created successfully
with key % \n”, nsqid);



Here, we create a new message queue with the msgget() system call. If successful, it
returns the ID of the newly created message queue; otherwise it returns a value less that
zero. The key value is a key t type variable. The structure is defined in ipc.h. The
permission 0644 of the created message queue is ORed with the constant IPC_CREAT to
form the second argument to the msgget() function.

It may be noted here that once we create a message queue with a specified permission,
that queue may be accessed later by using the same permission only. Using a different
permission results in an error. However, inn most cases, we may not know the permission
with which we first created the queue. In those cases, this error may be avoided by Oring
the PIC_CREAT with a0 (zero) while calling msgget() on an already existing queue.

For exanple: nsqi d=nsgget (key, | PC_CREAT| 0) ;

Once we create message queues, it is possible for us to view the existing queues by
Issuing the command:

[root@domain root] # ipcs -q

from the command console. This gives an output of the form:-
------ Message Queues --------

key nmsqi d owner per ns used- byt es nmessages
0x0000000f O r oot 644 0 0

If there is a function to create a queue, there must be one to destroy a queue as well. The
msgctl() call doesjust that. It takes three parameters, the queue identifier, the operation to
be done with the queue; in our case it is IPC_RMID (remove queue). The last parameter
must be zero (0) if we want to destroy a message queue.

msgct | (nmsqi d, | PC_RM D, 0)

Kindly note here that msgctl() call does more that just deleting the queue. We will see
more of this function later.

Sending a Message:

We will take up this topic with an example.
Exanpl e 6:
send. c
#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>

#i ncl ude <sys/nsg. h>
#i ncl ude <stdio. h>



mai n() {

}

i nt qid;

struct {

|l ong ntype; // nessage priority

char mext[25]; // the text of the nessage
} message;

/'l the above is the nessage data structure which
/'l contains the nessage to be sent in the ntext
/'l variabl e

gi d=nsgget ((key_t) 10, | PC _CREAT| 0666);
/'l creating the nmessage queue with perm ssion 666

if(qid==-1) {
perror(“nmsgget failed!”);
exit(1);

}

strcpy(nmessage. ntext,”God Mrning Wrld!'!'\n”);

/1l initializing the nessage structure with the
/] text nmessage we want to send!

nmessage. ntype=1; // setting priority to 1

/[l ** we now send this nessage using the nsgsnd()
/[l ** systemcall **

i f(nmegsnd(qi d, &ressage, strl en(nessage. ntext),0)==-1) {
perror(“msgsnd failed!'\n");
exit(1l);

} else printf("\nMessage successfully sent\n");

What this program does is at first it creates a message queue with read/write permissions.
It then initializes the message data structure with the custom message “Good Morning
World!!” and writes this message to the created message queue with priority 1.

The primary function used here in sending the messages is the msgsnd() system call that
takes four arguments. The first three arguments is the message queue identifier where to
send the message, the starting address of the message data structure and the length of the
actual message string.

The last argument needs some explanation. Processes normally wait when the message
gueue becomes full until there arises enough room for the message to be stored in the
gueue. Let us imagine that we send so many messages to the queue that the queue



becomes completely filled up and can accept no more incoming messages. In this case, a
0 (zero) as the last argument to msgsnd() will make our program wait until enough room
Is created in the queue so that the message can be sent. But specifying a IPC_ NOWAIT
constant as the last argument, we can have the process terminate immediately if thereis
no more room |eft.

nmegsnd( gi d, &essage, strl en(nmessage. nt ext), | PC_NOMI T)

Receiving a Message:

There is no point in sending a message that will never ever be received. So, our next
objective is to write a program that will receive the message sent by our previous
program.

Exanpl e 7:
recei ve.c

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/nsg. h>
#i ncl ude <stdio. h>

mai n() {
i nt qid;
struct {
| ong ntype;
char ntext[25];
} buff;

gi d=nsgget ((key_t) 10, | PC_CREAT]| 0666) ;

if(qid==-1) {
perror(“nmsgget failed!'\n”);
exit(1);

}

/'l now receiving the nessage already sent

i f (msgrcv(qid, &uff, 21,1, 1 PC NOMIT)==-1) {
perror(“msgrcv failed!'\n");
exit(1l);

}

printf(“message received is % \n”, buff.ntext);



The main function that receives the message is the msgrev() function. The first three
arguments of this function is same as the previous msgsnd() function. A 0 (zero) as the
last argument of this function signifies that our program would wait if the message queue
Is empty until a single message arrives at the queue with THE SAME PERMISSIONS
AS THE ONE IT IS WAITING FOR. We could also specify the last argument as
IPC_NOWAIT inwhich case, our program would not wait if the queue was empty.

The fourth argument is the priority of the message the process seeks to receive. Only
those messages that are sent with the matching priority number are accepted. Thus, we
can filter out only those messages that have a desired priority number, for acceptance and
possibly display on the screen.

One important thing to note in the above program is the length of the message
specified(21) as the third argument. This number is hard coded. If this value is less than
the length of the message sent, then there would be no truncatation; instead we would get
an error message:

negrcv failed: Arg list too |ong
So, how do we avoid this error if we do not know the length of the text message
beforehand?
The solution is to OR the last argument of the msgrcv() function with the constant
MSG_NOERROR. This will make our program ignore any length that was overshot and
instead print only the defined number of characters.

nmsgrcv(qi d, &uff, 15, 1, I PC_NOMI T| MSG_NCERRCR)
If we now run the previous program with this modification, we get the output as :-

“message received is Good Morning” with theword “World!!” truncated.

After we run the send.c program, an ipcs -q command will reveal that the message has
indeed been sent to the designated queue and iswaiting to be received:

r oot @EVELOPMENT root]$ ipcs -qg
—————— Message Queues --------

key nmsqi d owner per ns used- byt es nmessages
0x0000000a 32769 root 666 21 1

The size of the message is shown to be 21 bytes which is exactly the length of the string
"Good Morning World!'\n"

Now we run send.c another time without running receive.c and issue the same command.



[ root @EVELOPMENT root]$ ipcs -q

------ Message Queues --------
key nsqi d owner per ns used- byt es nessages
0x0000000a 32769 root 666 42 2

We see that now two messages are waiting in the queue, the messages that were sent by
running the send.c program twice. The used number of bytes is exactly twice the size of
individual messages, as was expected.

Now let us run the receive.c program THRICE. Each time after running the program, we
issue the ipcs -g command and find that, number of messages waiting reduce to 1 and
finaly zero, showing that the receive.c program has eaten up the stored messages. Since,
before running the receive.c program for the third time, there are no waiting messagesin
the queue, we get the error message in the third run:

negrcv fail ed!
No nmessage of desired type

Assignment:

Write a program which will accept a string as input from the command console and send
it as a message to the receiver program. The receiver program upon receiving the
message from the sender will display the received message as well as send an
acknowledgment to the sender program. The sender program will then display
“Acknowledgment received from receiver” and then will wait for the next user input
from the console.



Section C: Semaphores

Semaphores are data structures that help to synchronize several processes that access a
common resource. Semaphores can be used in any programs that need synchronization
and can be created similar to the creation of message queues. In this section, we will see
some basic operations on semaphores, such as semaphore creation, deletion, setting its
value, deleting its value etc.

The Unix command ipcs —s issued on the console enlists the available semaphores and
their properties.

[ root @EVELOPMENT root]$ ipcs -s
—————— Semaphore Arrays --------

key sem d owner per ns nsemns
0x00000000 163843 r oot 666 4
0x0000001a 1048606 r oot 666 4

Unlike queue, semaphores are created in sets. That is, at the most we can have 10 sets of
semaphores, each set consisting of a maximum of 25 semaphores.

Semaphore Creation:

If msgget() could create the message queue, for semaphore we have the semget() call tat
creates the semaphores. Semget() is used almost exactly like the msgget() cal. We will
show that with the help if an example:

Exanpl e 8

#i ncl ude<sys/types. h>
#i ncl ude<sys/i pc. h>

mai n() {
I nt sem d, nsenset, nsem fl ag, key;

nsenr4; // nunber of semaphores in each set
f1 ag=0666| | PC_CREAT; // semaphore perm ssion 666

for(nsenset =0; ;nsenset++) {

key=(key t)nsenset;

sem d=senget (key, nsem fl ag) ;

I f(sem d>0) {
printf(“\nSemaphore Created with 1D ");
printf(“%l\n”, semd);

} else {
printf(“Maxi mum num of senmaphore set:”);



printf(“ %\ n", nsenset);
exit(0);

}

This program creates maximum number of possible semaphore sets (10), each set has 4
semaphores. The semget() function takes three arguments, the key or the name of the
semaphore set, the number of semaphores to create in that set (here 4) and aflag variable
with the permission (666) with IPC_CREAT constant ORed.

Please note that each of the semaphores will have a unique key and all the semaphores
belonging to aparticular set will have the same key value.

A maximum number of 25 semaphores are allowed for the creation within asingle set.

Semaphore Destruction

All the semaphores belonging to a specified set (thus having the same key value) can be
killed using the semctl() call.

senctl (sem d, 0,1 PC_RM D, 0)

where the first argument is the semaphore key (a set of semaphores with the same key
value), the third argument is the IPC_RMID constant, the second and fourth arguments
must be zero. We will explore more of these two arguments when we discuss setting and
retrieval of semaphore values.

Please note that when one user or process creates a semaphore with a key value, say 1,
another user or process may attempt to create the same semaphore with the same key
value. Unless we specify that this semaphore is to be created in the exclusive mode, the
second user will not get an error message. All he will be returned the same ID.

However, if we do want an error to be returned, we can always create the semaphore in
the exclusive mode by Oring the flag with the IPC_EXCL constant.

For example,

sem d=senget (key, 1, | PC_CREAT| 0666]| | PC_EXCL)
Further, lets assume that the first process created a semaphore with 0666 permission
(read-alter-read-alter-read-alter). Now, any attempt by the next process/user would have
to be in a permission mode which isthe SAME OR IS A SUBSET of the initial mode, for
example 0644.

An example will illustrate this fact:-



Exanpl e 9

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>

mai n() {
Int semd, key,flag, nsem
key=(key_t) 0x30;

f | ag=PC_CREAT| 0644;
/1l first give the perm ssion 644

nsenrl;
sem d=senget (key, nsem fl ag) ;

I f(sem d>0){
printf(“Created senmaphore wth”);
printf(“ID %\ n”, semd);

} else perror(“Error in 1% senget\n”);

f 1 ag=l PC_CREAT| 0666;

/'l now changi ng the perm ssion to 666

/'l whch is a superset of 644, the previous
[/ perm sion

sem d=senget (key, nsem fl ag) ;

I f(sem d>0){
printf(“Created semaphore wth”);
printf(“ID %\ n”, semd);

} else perror(“Error in 2nd senget\n”);

Here, call to second semget() will result in an error, because it is called with a permission
666 which is a superset of the permission with which the semaphore ws originally
created. (644).

Moreover, if wefirst create a certain number of semaphoresin aset and then try to create
it once more with another different number for the same set, the second number being
greater than the original number of semaphores in the set, then we would get an error in
our second attempt. Another call to the semget() will be successful only when in the
second call we specify a smaller number of semaphores for the set (compared to the
number of semaphores with which the set was originally created).



Retrieving and setting semaphore values:

We used the function semctl() to kill a semaphore. The same function can be used to set
and retrieve the value of a semaphore.
Setting the value of the semaphore is simple as we illustrate it with an example:-

Exanpl e 10

#i ncl ude <sys/types. h>
#i ncl ude <sys/ipc. h>
#i ncl ude <sys/sem h>
#i ncl ude <errno. h>

mai n() {
int semd, retval

sem d=senget (0x20, 1, 0666| | PC_CREAT) ;

/1l using the function senttl to set the val ue
senctl| (sem d, 0, SETVAL, 1) ;

/1l using the same function to retrieve the val ue
/'l of the semaphore ...
retval =senct! (sem d, 0, GETVAL, 0) ;

printf(“The value of the senmaphore”);
printf(“ after setting: %\n”,retval);

/1 doing the same procedure once again ...
senct | (sem d, 0, SETVAL, 2);

retval =senctt! (sem d, 0, GETVAL, 0) ;

printf(“The value of the senmaphore”);
printf(“ after setting: %\n”,retval);

}

The call semctl(semid,0,SETVAL,0) sets the value of the semaphore with the key semid.
But as we had said before, a set of semaphores can have the same key value. Hence we
must provide the index value of the individual semaphore within that set whose value we
want to set. This index is the second argument of the function. The third argument is the
operation we want to perform on the semaphore, here setting the value. The last argument
IS the value we want to set.

Semaphore value can be retrieved by invoking the call

senct | (sem d, 0, GETVAL, 0)



Here, the arguments are same as the previous case of setting the value, except that the last
argument must be zero(0). This function returns the value of the semaphore with index 0
and having the key value semid.

What if we wanted to get the pid of the process that set the value of the semaphore? Take
this example:

Exanple 11

#i ncl ude<sys/types. h>
#i ncl ude<sys/i pc. h>
#i ncl ude<sys/ sem h>
#i ncl ude<errno. h>

mai n() {
int semd, retid;

/'l creating the senmaphore

sem d=senget (0x20, 1, 0666| | PC_CREAT) ;
/1l setting val ue of semaphore
senctl| (sem d, 0, SETVAL, 1) ;

/'l getting the PID of the process that set
/'l the senmaphore
retval =senttl (sem d, 0, GETPI D, 0) ;

printf(“PID returned by senctl () is %d & ", retval);
printf(“the actual PIDis %\ n”",getpid());

}

Here, we first set the value of the semaphore and then use GETPID constant as argument
tosenct! () to retrieve the PID of the process that had set the value of the semaphore.
In our case, thisis same as the current process of the program and hence r et val and
the value returned by get pi d() should be same.

This concludes our discussion on semaphores.

Reference:

The ‘'C’ Odyssey; Unix — The open Boundless C by Vijay Mukhi; BPB
Publications.



Appendix

Available standard kernd signalsin Linux (RedHat 6/7/8/9)

Linux supports both POSIX reliable signals (hereinafter "standard signals') and POSIX
real-time signals.

Standard Signals

Linux supports the standard signals listed below. Several signal numbers are architecture
dependent, as indicated in the "Value" column. (Where three values are given, the first
one is usualy valid for alpha and sparc, the middle one for 1386, ppc and sh, and the last
one for mips. A - denotes that asignal is absent on the corresponding architecture.)
The entriesin the "Action" column of the table specify the default action for the signal, as
follows:
Term

Default action is to terminate the process.
Ign

Default action isto ignore the signal.
Core

Default action is to terminate the process and dump core.
Stop

Default action is to stop the process.

First the signals described in the original POSIX.1 standard.

Signa Vaue  Action Comment

or death of controlling process

SIGINT 2 Term Interrupt from keyboard
SIGQUIT 3 Core Quit from keyboard
SIGILL 4 Core lllegal Instruction
SIGABRT 6 Core Abort signal from abort(3)
SIGFPE 8 Core Floating point exception
SIGKILL 9 Term Kill signal

SIGSEGV 11 Core Invalid memory reference
SIGPIPE 13 Term Broken pipe: write to pipe with no readers
SIGALRM 14 Term Timer signal from alarm(2)
SIGTERM 15 Term Termination signa
SIGUSR1 30,10,16 Term User-defined signal 1
SIGUSR2 31,1217 Term User-defined signal 2
SIGCHLD 20,17,18 Ign  Child stopped or terminated
SIGCONT 19,18,25 Continue if stopped
SIGSTOP 17,19,23 Stop  Stop process

SIGTSTP 18,20,24  Stop Stop typed at tty



SIGTTIN 21,21,26  Stop tty input for background process
SIGTTOU 22,22,27  Stop tty output for background process
Thesignals SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.

Next the signals not in the POSIX.1 standard but described in SUSv2 and SUSv3 /
POSIX 1003.1-2001.

Signa Vaue Action Comment

SIGPOLL Term Pollable event (SysV). Synonym of SIGIO
SIGPROF 27,27,29 Term Profiling timer expired

SIGSYS 12,-,12 Core Bad argument to routine (SVID)
SIGTRAP 5 Core Trace/breakpoint trap

SIGURG 16,23,21 Ign  Urgent condition on socket (4.2 BSD)
SIGVTALRM 26,26,28 Term Virtual alarm clock (4.2 BSD)

SIGXCPU 24,2430 Core CPU timelimit exceeded (4.2 BSD)
SIGXFSZ 25,2531 Core Filesizelimit exceeded (4.2 BSD)

Up to and including Linux 2.2, the default behaviour for SIGSYS, SIGXCPU,
SIGXFSZ, and (on architectures other than SPARC and MIPS) SIGBUS was to
terminate the process (without a core dump). (On some other Unices the default action
for SIGXCPU and SIGXFSZ is to terminate the process without a core dump.) Linux
2.4 conforms to the POSIX 1003.1-2001 requirements for these signals, terminating the
process with a core dump.

Next various other signals.

Signa Vaue Action Comment

SIGEMT 1,-,7 Term

SIGSTKFLT -,16,- Term Stack fault on coprocessor (unused)
SIGIO 23,29,22  Term 1/0O now possible (4.2 BSD)
SIGCLD -,-,18 Ilgn A synonym for SIGCHLD

SIGPWR 29,30,19 Term Power failure (SystemV)

SIGINFO 29,-,- A synonym for SIGPWR

SIGLOST Term Filelock lost

SIGWINCH 28,28,20 Ign  Window resize signal (4.3 BSD, Sun)
SIGUNUSED -,31,- Term Unused signal (will be SIGSY S)

(Signal 29is SIGINFO / SIGPWR on an aphabut SIGLOST on asparc.)

SIGEMT is not specified in POSIX 1003.1-2001, but neverthless appears on most other
Unices, where its default action istypically to terminate the process with a core dump.
SIGPWR (which is not specified in POSIX 1003.1-2001) is typically ignored by default
on those other Unices where it appears.

SIGIO (which is not specified in POSIX 1003.1-2001) is ignored by default on several
other Unices.



Real-time Signals

Linux supports real-time signals as originally defined in the POSIX.4 real-time
extensions (and now included in POSIX 1003.1-2001). Linux supports 32 rea-time
signals, numbered from 32 (SIGRTMIN) to 63 (SIGRTMAX). (Programs should
aways refer to real-time signals using notation SIGRTMIN+n, since the range of real-
time signal numbers varies across Unices.)

Unlike standard signals, real-time signals have no predefined meanings. the entire set of
real-time signals can be used for application-defined purposes. (Note, however, that the
LinuxThreads implementation uses the first three real-time signals.)

The default action for an unhandled real-time signal is to terminate the receiving process.
Real-time signals are distinguished by the following:

1.
Multiple instances of real-time signals can be queued. By contrast, if multiple
instances of astandard signal are delivered while that signal is currently blocked,
then only oneinstance is queued.

If the signal is sent using siggueue(2), an accompanying value (either an integer or
apointer) can be sent with the signal. If the receiving process establishes a handler
for thissignal using the SA_SIGACTION flag to sigaction(2) then it can obtain
thisdataviathe si_value field of the siginfo_t structure passed as the second
argument to the handler. Furthermore, the si_pid and si_uid fields of this structure
can be used to obtain the PID and real user ID of the process sending the signal.

Real-time signals are delivered in a guaranteed order. Multiple real-time signals of
the same type are delivered in the order they were sent. If different real-time signals
are sent to a process, they are delivered starting with the lowest-numbered signal.
(I.e., low-numbered signals have highest priority.)

If both standard and real-time signals are pending for a process, POSIX leaves it
unspecified which is delivered first. Linux, like many other implementations, gives
priority to standard signalsin this case.

According to POSIX, an implementation should permit a least
_POSIX_SIGQUEUE_MAX (32) red-time signals to be queued to a process. However,
rather than placing a per-process limit, Linux imposes a system-wide limit on the number
of queued real-time signals for all processes. This limit can be viewed (and with
privilege) changed via the /proc/sygkernd/rtsig-max filee A related file,
/proc/syskernel/rtsig-max, can be used to find out how many real-time signas are
currently queued.



