
Introduction to Computing
File Access, Command-Line Arguments

Recall File

● FILE* is a datatype used to

represent a pointer to a file

● To open a file we use a function

called fopen
○ It takes two parameters

■ Name of the file

■ Mode in which it is to be opened

○ It returns a pointer to the file if the file is

opened successfully, otherwise it

returns NULL

Example of a file creation for writing

FILE *fp;

char filename[] = “a_file.dat”

fp = fopen (filename, “w”);

if (fp != NULL)

{

/* WRITE SOMETHING IN FILE */

fclose (fp);

}

File operations

● fputc

● fputs

● fprintf

● fflush

● fgetc

● fgets

● fscanf

● feof

● ungetc

FILE *fp = fopen("abc.txt", "w");

if (fp != NULL) {

fputc(’a’, fp);

fputs("cde", fp);

fprintf(fp, "%d, %c, %s", 25, ’I’, "hello");

fflush(fp);

fclose(fp);

}

File operations (contd)

● fputc

● fputs

● fprintf

● fflush

● fgetc

● fgets

● fscanf

● feof

● ungetc

FILE *fp = fopen("abc.txt", "r");

char buf[10]; int num; char c;

if (fp != NULL) {

c = fgetc(fp); // printf (“%c”, c);

fgets(buf, 4, fp); // printf (“%s", buf);

fscanf(fp, "%d, %c, %s", &num, &c, buf);

printf (“%d %c %s”, num, c, buf);

fclose(fp);

}

File operations (contd)

● fputc

● fputs

● fprintf

● fflush

● fgetc

● fgets

● fscanf

● feof

● ungetc

char c, buf[256];

FILE *fp = fopen("abc.txt", "r");

if (fp != NULL) {

while (!feof(fp)) {

c = fgetc(fp);

if (c == ‘a’)

ungetc(‘b’, fp);

fgets(buf, 255, fp);

printf("%s", buf);

} }

File operations (contd)

Two more

functions for

writing or

reading binary

data

● fwrite

● fread

int numbers[5] = {10, 20, 30, 40, 50};
fptr = fopen("numbers.bin", "wb");
fwrite(numbers, sizeof(int), 5, fptr);
fclose(fptr);

int readNumbers[5];
fptr = fopen("numbers.bin", "rb");
fread(readNumbers, sizeof(int), 5, fptr);
fclose(fptr);

for (int i = 0; i < 5; i++) { printf("%d ", readNumbers[i]);}

Command Line Arguments (CLA)

● Command-line arguments allow the

user to provide inputs to the

program at runtime. It is useful for

customizing program behavior

based on user input.

● The arguments are passed using two

parameters in the main function:
○ int argc: Argument count

○ char *argv[]: Argument vector (array of

arguments as strings)

● The first argument (argv[0]) is always

the program name.

Command Line Arguments (CLA)

● Compile the code ⇒
○ It will generate a.exe file

Run the code as follows:

.\a.exe Hello
argument supplied is Hello

.\a.exe Hello Hi
Too many arguments.

.\a.exe
One argument expected.

int main(int argc, char *argv[])
{

if(argc == 2)
printf ("argument supplied is %s\n", argv[1])

else if (argc > 2)
printf ("Too many arguments.\n");

else
printf ("One argument expected.\n");

}

Using Command-Line Arguments
● In this example, we will use

command-line arguments to accept

a file name as input and then read

the file's contents

int main(int argc, char *argv[]) {

if (argc != 2) {
printf('Usage: %s <filename>\\n', argv[0]);

return 1;
}
FILE *fptr = fopen(argv[1], 'r');

if (fptr == NULL) {
printf('Error opening file %s\\n', argv[1]);

return 1;
}
// Read file content

fclose(fptr);
}

File Positioning Functions

● File positioning functions allow us

to move the file pointer to different

locations in a file, which is useful

for reading or writing data from

specific positions.

● Key Functions:

● fseek(): Moves the file pointer to a

specified position.

● ftell(): Returns the current position of

the file pointer.

● rewind(): Moves the file pointer back

to the start of the file.

fseek() Function

fseek(FILE *stream, long offset,

int whence);

● Parameters:
○ stream: The file pointer.

○ offset: Number of bytes to move.

○ whence: The reference point (where to

move from):

■ SEEK_SET: Beginning of the file.

■ SEEK_CUR: Current position.

■ SEEK_END: End of the file..

Example: Move the file pointer 10 bytes

ahead from the start of the file

FILE *fptr = fopen("example.txt", "r");

// Move 10 bytes from the beginning

fseek(fptr, 10, SEEK_SET);

ftell() Function

long ftell(FILE *stream);

● Purpose: Returns the current

position of the file pointer,

measured in bytes from the

beginning of the file..

Example: Find the current position of the file

pointer after reading some data

FILE *fptr = fopen("example.txt", "r");

// Move 10 bytes ahead

fseek(fptr, 10, SEEK_SET);

// Get current position (should return 10)

long pos = ftell(fptr);

printf("Current position: %ld\n", pos);

rewind() Function

void rewind(FILE *stream);

● Purpose: Resets the file pointer to

the beginning of the file.

● Note: It is equivalent to

fseek(stream, 0, SEEK_SET);.

Example: Reset the file pointer after

reading some data, then read the file

again from the beginning

FILE *fptr = fopen("example.txt", "r");

// Move 10 bytes ahead

fseek(fptr, 10, SEEK_SET);

// Move back to the start of the file

rewind(fptr);

Practical Example: Reading Specific Data

● Suppose we have a binary

file that stores records of

fixed size (e.g., student

records), and we want to

jump to a specific record

(e.g., the 3rd record).

● Using fseek(), we can

directly jump to the position

without reading the entire file

sequentially.

struct Student { int id; char name[50]; };

FILE *fptr = fopen("students.bin", "rb");

// Jump to the 3rd record

fseek(fptr, 2 * sizeof(struct Student), SEEK_SET);

struct Student s;

// Read the 3rd record

fread(&s, sizeof(struct Student), 1, fptr);

printf("Student ID: %d, Name: %s\n", s.id, s.name);

fclose(fptr);

	Slide 1: Introduction to Computing File Access, Command-Line Arguments
	Slide 2: Recall File
	Slide 3: File operations
	Slide 4: File operations (contd)
	Slide 5: File operations (contd)
	Slide 6: File operations (contd)
	Slide 7: Command Line Arguments (CLA)
	Slide 8: Command Line Arguments (CLA)
	Slide 9: Using Command-Line Arguments
	Slide 10: File Positioning Functions
	Slide 11: fseek() Function
	Slide 12: ftell() Function
	Slide 13: rewind() Function
	Slide 14: Practical Example: Reading Specific Data

