
Introduction to Computing
User-defined Datatype, DMA, File



User Defined Datatypes

● Sometimes basic data-types are not 

sufficient for describing problems 

conveniently, e.g., 2D 

coordinates, complex numbers, 

student information, etc.

● You can define your own data-type 

as per your requirements

● You need to use the keyword struct 

for this purpose

● struct is short for structure

struct new_type {

member variable 1;

…

member variable n;

};

● struct new_type becomes your new 

user-defined data-type

● member(s) can be any existing 

data-types or user-defined types, 

such as, int, float, int*, char[10], 

struct another_type, etc.



Structures

Example: 
representing a complex number 
n = x + i y

struct complex{
float x;
float y; 

};

struct complex n;
n.x = 1.0;
n.y = 2.0;
// This^ can represent the complex 
number 1.0 + i 2.0 as printed below
printf ("%f + i %f", n.x, n.y);

● struct complex n1={1,2}, n2={2,3}, n3;
○ Declare and initialize similar to any type

● n3 = n2; //copies the value of n2 into n3

● Other operations does not work (recall array,strings), e.g.

○ n1+n2, n1-n2

○ n1 == n2, n3 = {10,20}

To achieve these, you need to write your own functions

struct complex add (struct complex num1, struct complex num2) {

struct complex sum;

sum.x = num1.x + num2.x;

sum.y = num1.y + num2.y;

return sum;

}

n3 = add (n1, n2); //function call for addition



Structures (contd.)

● Normal operations does not 

work

○ n1+n2, n1-n2

○ n1 == n2

● You need to write your own 

functions and define your own 

operations
○ Example code for addition of two 

complex numbers is given ⇒

○ Similarly you can write your own 

subtraction, multiplication, equality, 

conjugate, etc.

add is a function that takes two complex numbers 

as input and returns their complex sum as output

struct complex

add (struct complex num1, struct complex num2) 

{

struct complex sum;

sum.x = num1.x + num2.x;

sum.y = num1.y + num2.y;

return sum;

}

n3 = add (n1, n2); //function call for addition



Renaming Datatypes

You can choose to rename (create an 
alias) for any datatype using a keyword 
called typedef
-- it is particularly convenient for 

structures
typedef struct complex Q;

Another way of writing typedef

typedef struct complex{

float x;

float y;

}Q;

Example: Then, we could write code as follows

You can declare variables as follows: Q n1, n2;

Use in functions:

Q add (Q n1, Q n2) {<<function definition for add>>}



Size of structure

Size of a structure variable is (ideally) the sum of 

the sizes of all its member’s sizes, so

sizeof (Q) = sizeof (float) + sizeof (float)

But this is not always the case in practice:

structure padding -- extra memory added for 

convenience/ safety

#pragma pack(1) -- exact size memory as shown 

above

Consider the following structure

typedef struct a_type{

char x;

int y;

}atype;

sizeof (atype) theoretically should be

sizeof (char) + sizeof (int) = 1+4 = 5

But if you run the code, it gives 8 and not 5 

● Due to structure padding

● Use #pragma pack(1) at the start of your program

… and, you can force the size to be 5



Structures and pointers

● Since structures are just another 

datatype - it is possible to create 

pointers of it’s type

● struct complex *ptr; ⇒ is able to 

contain the address of structure 

variable

○ We could also write Q *ptr; 

⇒since we renamed it as Q

● So, sizeof(ptr) ⇒ ?

Accessing the members using 
pointers variables

Q *ptr; Q v = {10, 20};
ptr = &v;
○ *ptr.real ⇒ will not work
○ (*ptr).real ⇒ will work

Alternatively the arrow operator (->) can 
be used to access members

○ ptr->real ⇒ will work
○ printf ("%f", ptr->real);



Structures examples

Store student record with name, roll number, 

height, weight, DoB, DoJ

● How do you store information about 100 

students?

● What happens if one or more student joins 

later on?

● What happens if you do not know the 

number of students beforehand?

// A possible implementation 
typedef struct _student_info{

char *name;
char DoB[10], DoJ[10];
int roll_no;
float height, weight;

}student;

// A single student info
student stud1;
// 100 students info
student stud_arr[100];



Array and Structure

Since structures are just another 

datatype - it is possible to create an array 

for the same

Q arr[5]; ⇒ equivalent to 5 Q variables

○ Variables are accessed using 

indexes e.g. arr[1], arr[3], etc.

○ Can also be accessed using pointer 

arithmetic ← remember this?

● arr[i].x, arr[i].y ← to access 

member variables

● arr[i] is the same as *(arr + i)

● i.e. arr + i is a pointer to arr[i]

● So, (arr+i)->x will also work

– okay, but how to create array when 

size is not known beforehand?



Three Memory Regions

● Stack Memory 
○ Holds local variables and function call information

○ Managed automatically (LIFO)

○ Released when the function exits

● Heap Memory 
○ Dynamically allocated memory (using malloc/free) 

○ Memory management is manual and provides flexibility for 

runtime allocations.

● Static Memory
○ Global and static variables are stored here

○ Allocated at compile time

○ Retains values for the entire program duration

Note: In reality, there are more regions, but for out purposes, these three 

should suffice

● Stack memory grows in 
one direction, and it 
is automatically 
allocated

● Free memory stays in 
between stack and heap 
region for maximum 
utilization of memory

● Heap memory grows in 
the opposite direction, 
and this area is 
controlled by the 
programmer

● Static memory region is 
fixed in size, and is 
decided at compile time



Global and Static Variables (Static memory region)

● Global Variables:
○ Declared outside all functions

○ Scope: Accessible throughout the 

program

○ Lifetime: Entire program execution

● Static Variables:
○ Scope: Limited to the block in which 

they are defined (local or global)

○ If declared inside a function, it retains 

its value between function calls

○ Lifetime: Entire program execution

Use Cases:
● Global: Sharing information across multiple 

functions.
● Static: Keeping information localized but 

persistent.

• Global variables are by default static

• Static variables can be global or local

• For static global variables, they are 

restricted to the file where defined



Dynamic Memory allocation (DMA) (Heap memory region)

● This is another way to allocate 

memory for variables

● It can allocate memory to a 

variable during the runtime of the 

program
○ So, you can read/scan the number of 

elements from the user

○ Then allocate necessary memory

● It works for allocating memory for
○ A single variable of any type

○ An array of any type

● We need to #include library stdlib.h
● We will use two functions from this library

○ malloc - memory allocator

○ free - frees some allocated memory

Prototype: void* malloc (int size)

● Allocates a memory space of the given size

● Returns the address of the allocated memory, 

i.e., a pointer 
○ But, without any specific type; hence, void*

● You can typecast the pointer to your need



DMA (contd.)

To create a int variable using malloc, declare a int 

pointer variable

int *ptr;

Allocate memory using malloc (two ways)

ptr = (int*) malloc (sizeof(int));// explicit typecast

ptr = malloc (sizeof(int)); // implicit typecast

Access the values using *ptr

*ptr = 10;

printf (“%d”, *ptr); // → prints 10

Caution: if you try to access *ptr

before allocating memory, the 

behaviour is undefined

For the structure Q, we can do the 

same as follows

Q *ptr;

ptr = (Q*) malloc (sizeof(Q));

Access: ptr->x, ptr->y



Array and DMA

● To create an array using DMA

● We need to specify the total 

memory size (in bytes) required for 

the array

e.g., to get an integer array of size 10, 

we can write the following code

int *arr;

arr = (int*) malloc (sizeof(int) * 10);

Access as arr[i] or *(arr+i)

If you need to take the size from the user, you 

can do the following:

int n; int *ptr;

scanf (“%d”, &n);

ptr = (int*) malloc (sizeof(int) * n);

Alternatively,
ptr = (int*) calloc (n, sizeof(int));

To release an allocated memory, you can 

write
free (ptr);

■ Make sure the ptr is a valid one

■ Otherwise, it may result in error



Issues with Array

● Array has a fixed size 
○ Be it allocated using DMA or statically

● Assume you have an array of 10 

elements
○ You have inserted 5 elements from 0 to 4 

indexes, then you want to insert another 

element in position 2

○ You have already inserted 10 elements, then 

you want to add another element

● DMA allows you to free allocated 

memory
○ So, can you remove an element from the 

array? How?

A better solution for such issues:

Linked list
○ A clever solution using 

structures, DMA and pointers

○ It requires more space than an 

array to store the same amount 

of data

It's a beautiful testimony to the power of C 

language

○ We will talk about it in the next 

lecture



Storage issues

● Single variable
○ Can only store a value

● Array of variables
○ Can store multiple values, but size 

allocation needs to be known first

● Array using DMA - can be allocated 

later, based on requirements
○ But insertion, deletion, resizing is still an 

issue

● Linked list is used to alleviate such 

problems
○ However, it uses more memory compared 

to arrays to store the same information

← All of these solution works only until 

program is running, once it is closed all 

data are lost.

● The solution to this problem is 

usage of persistent storage (you 

know these as pen drive, ssd, hard 

disk, etc.)

● But how do you write in such 

devices?

— We create files.



File

● Stored as sequence of bytes, 

logically contiguous
○ May not be physically contiguous on 

disk, but you don’t need to worry about 

that

● Two types of files
○ Text - can only contain ASCII 

characters

○ Binary - can contain non-ASCII 

characters

■ Example: image, video, 

executable, audio, etc.

● Basic operations on files (stdio.h)
○ Open

○ Read

○ Write

○ Close

● A file needs to be open before you 

can do read or write operations

● Once the works are done on file 

you need to close the file

● In case, close is not done, some/all 

contents of the file may be lost



File (contd.)

● FILE* is a datatype used to 

represent a pointer to a file

● To open a file we use a function 

called fopen
○ It takes two parameters

■ Name of the file

■ Mode in which it is to be opened

○ It returns a pointer to the file if the file is 

opened successfully, otherwise it 

returns NULL

Example of a file creation for writing

FILE *fp;
char filename[] = “a_file.dat”
fp = fopen (filename, “w”);
if (fp == NULL)
{

printf (“unable to create file”);
/* DO SOMETHING */

}
/* WRITE SOMETHING IN FILE */
fclose (fp);



File (contd.)

Modes of opening a file

● “r” – Opens a file for reading
○ Error if the file does not already exist
○ “r+” allows write also

● “w” – Opens a file for writing
○ If file does not already exist, it creates a 

new file
○ If file already exists, all the previous 

contents of the file will be overwritten
○ “w+” allows read also

● “a” – Opens a file for appending 
(write at the end of the file)

○ “a+” allows read also

● When error occurs, e.g. file failed to 

open, the rest of your program may 

not work properly
○ In such case, you may want to exit the 

program on emergency basis

○ The function exit() from stdlib.h allows 

you to do so

○ If can be called from anywhere in the c 

program and it will terminate the 

program at once



File (contd.)

FILE *fp;
char filename[] = “a_file.dat”
fp = fopen (filename, “w”);
if (fp == NULL)
{

printf (“unable to create file”);
/* DO SOMETHING */
exit(-1);

}
/* WRITE SOMETHING IN FILE */
fclose (fp);

● You can pass any integer in the exit 

function

● This value will be returned as the 

output of the program
○ Recall that a c function is a collection of 

functions and functions must return 

something

○ A negative value (by convention) is 

treated as some error has happened


	Slide 1: Introduction to Computing User-defined Datatype, DMA, File
	Slide 2: User Defined Datatypes
	Slide 3: Structures
	Slide 4: Structures (contd.)
	Slide 5: Renaming Datatypes
	Slide 6: Size of structure
	Slide 7: Structures and pointers
	Slide 8: Structures examples
	Slide 9: Array and Structure
	Slide 10: Three Memory Regions
	Slide 11: Global and Static Variables (Static memory region)
	Slide 12: Dynamic Memory allocation (DMA) (Heap memory region)
	Slide 13: DMA (contd.)
	Slide 14: Array and DMA
	Slide 15: Issues with Array
	Slide 16: Storage issues
	Slide 17: File
	Slide 18: File (contd.)
	Slide 19: File (contd.)
	Slide 20: File (contd.)

