Introduction to Computing

String operations, Preprocessors

Recap

e Pointers
o Value
o Name
o Address
o Size and type of pointers

e Array and pointers
e Function and pointers

Functions calling functions
Recursion

Passing Array to functions
o Problems with sending size

Character Array
Strings

Character Arrays and Strings

e Character arrays are very useful in storing data

O

(@)
(@)
(@)

Even though they are basically integers underlying, but the range of the values are limited
This allows to have some additional functionalities (for convenience, of course)
Strings are declared and defined the same way as any other array types
Since the values are in range of 0-127 (sometimes more, but still, limited), we have the
convenience make some of the characters for special use such as:

m newline(\n)

m backspace (\b), etc.
In the case of character arrays we use a special character called the null character

m Represented as \0’ (backslash-zero)

m Ascii value of this characteris 0

m It prints nothing on the computer screen

Character array and strings

e Character variable
Ochar ch1, ch2 = ‘a’;

e Character array
O char cal[10];
O char ca2[3] = {'S’,'D’,B’};
O char ca3[5] ={'S’,'D’,'B’};

A string is a character array for which the last valid character is
the null character.
. Char Ca4[1 O] — {‘S!"O!,‘u!,‘m’,la,,ld’,ﬁi’,ip!,‘\o’};
® char ca5[10] = “Soumadip”;
O Both the above statements are equivalent

O This type of initialization makes sure that the null character is
automatically appended at the end

You can't do the following after declaration though
cal ="wordl"; // not allowed — why?
ca4 ="word2"; // not allowed — what is the type of cal or ca4?
-- More on what can and can't be done, later

String is basically short for “a string of characters”
e A single character in C is written within single quotes e.g. ‘a’, ‘3’, 'Z’, ‘%’, etc.
e A string is written in C within double quotes, e.g., “a_string”, “with spaces”, “and with $”

etc.

b

Strings and scanf

e scanf also provides a shortcut for

strings format %s
o scanf (“%s”, ch_arr); = this allows you to
read a string from user without spaces

o scanf ("%[”* M\n]%*c", ch_arr);
m This is equivalent to %s; reads the
characters until space () or the newline
character (\n) is encountered

o scanf ("%[™n]%*c", ch_arr);
m reads a string with spaces
until a newline(\n); so, it can
read strings with spaces

Note: All the method discussed
here will add a \0’ to the end of the
scanned characters - making it a
string

String Operations (Two ways)

e Normal assignment operators do
not work on strings (Nor on any
kind of arrays for that matter)

e You need to define different
operation on strings by writing your

own functions
o Compare two strings for equality
Copy one string to another

(@)
o Concatenate two strings
o Check if ainput string is integer or float

e Alternatively, you can #include a new
header file called string.h and use
built-in functions for such operations

Some useful function prototypes are as follows:
int strlen(const char *str)
int strncmp(const char *strl,

const char *str2, int n)
char* strstr(const char *haystack,

const char *needle)
char* strcat(char *dest, const char *src)

String Operations Without using string.h

Solved Examples: Manual String Length:
o Finding string length
o Concatenating strings int str_length(char str[]) {
o Comparing strings int length = 0;
while (str[length] '="\0") {
Try yourselves length++:
o Copy one string to another }

o Checkif ainput string is integer or float
o Duplicate strings
o Change a string to uppercase/lowercase }

return length;

More String Operations Without using string.h

Manual String Concatenation: Manual String Comparison:

void concat(char dest[], char src[]) .
int compare(char strl[], char str2[])

{

inti=0,j=0; {

while (dest[i] = "\0") i++; inti=0;

while (srcfj] '="0") { - o - 11—
dest[i] = src[j]: wh!le (stri[i] == str2[i] && strlfi] !'=
i++: Q") i++;
e+ if (strl[i] =="\0"' && str2[i] =="\0")

oo return O;

dest[i] =10; return stri[i] - str2[i];

j }

String Operations with #include<string.h>

e Some Bullt-in Functions:

(@)

@)

O

strlen(): String length
strcpy(): Copy strings
strcat(): Concatenate
strings

strcmp(): Compare strings
strstr(): Locate substring in
another string

Usage Example:

char str1[20] = "Hello";

char str2[20];

strcpy(str2, strl); // Copy strl into str2

Find a Substring (strstr()):
char str[] ="1love programming";
char *sub = strstr(str, "love");
if (sub !'=NULL) {
printf("Found substring at: %s\n", sub);

}

Output: "Found substring at: love programming"

#include<string.h>

char str1[20]="A string", str2[20]="Another string"; char ch="r"; int n=4;

strlen (strl) /] gives the length of the string = 8

strcpy (str2,strl) /] copies strl into str2

strncpy (str2, strl, n) Il copies first n characters from strl into str2
strcmp (strl, str2) Il returns O if both strings are the same
strcmpi (strl, str2) /[compares two strings ignoring the case
strcat (strl, str2) /[concatenates str2 at the end of strl

strchr (strl, ch) /Il finds the position(pointer) of first ch in strl

Link to more/all string.h functions with examples.

https://www.ibm.com/docs/en/i/7.4?topic=files-stringh

More operations on strings

e Split strings into words

e Split strings based on a given
delimiter

e Find the longest string in an array
of strings

e Sort an array of strings
alphabetically

e Counting Words in a Sentence

e Join an array of words into a single
string with space

Useful ways to handle multiple
strings in your code
= Array of strings

char arr[3][10] = {"IACS", "UG", "2020"};

= Array of pointers to strings
char *arr[] = {"IACS", "UG", "2020"};

--- we will learn more on these™
declarations later

Preprocessors/ Macro

e Preprocessor is not a part of the Examples:
il : .
th?mp' etr _— 1o e #inlcude <string.nh>
° r'jci Sssep n the compriation o #define SIZE 10
. N o #define SQUARE(X) ((X)*(X))
e a C Preprocessor is just a text : .
L e #Hifdef <macro>.. #endif
substitution tool o eofc

e It instructs the compiler to do
required pre-processing before the
actual compilation

e They are also known as macro

Preprocessor Directives in Depth

#define: Used to define symbolic

constants or macros.

o Example: #define PI 3.14
o Usage: Replace PI with 3.14 throughout
the code.

#include: Used to include header
files.
o Example: #include <stdio.h>

o Usage: Inserts the content of the specified
file into the program before compilation.

#undef: Undefine a previously

defined macro.
O Example: #undef PI

#ifdef and #ifndef: Conditional
compilation based on whether a macro is

defined or not.
O Example:

#define PI 3.14
#ifdef PI
printf("Pl is defined\n");
#endif
#undef PI

#ifndef Pl
printf("Plis not defined\n");
#endif

Conditional Compilation

o #if, #elif, #else, #endif #define LEVEL 2

o Allows sections of code to be
conditionally included or excluded.

#if LEVEL ==
printf("Beginner level\n");

#elif LEVEL ==

e Advantages: printf("Intermediate level\n");

o Helps in debugging by selectively
compiling parts of the code. #e|se
o Allows platform-specific code. printf("Advanced level\n");

#endif

Macro Functions & Predefined Macros

e Defining Macros with Arguments: Common Predefined Macros:
#define SQUARE(X) ((x)*(x))

e Best Practices: Use parentheses
around macro arguments to avoid
precedence issues.

__FILE__ : Current file name.
__LINE_ : Currentline number.
___DATE__: Compilation date.
__TIME__ : Compilation time.

inta=25; intresult = SQUARE(a + 1);

#define SQUARE(x) x * x //bad practice
-->a+1*a+1-==>54+ 1% +1 = 11

#define SQUARE(x) ((x) * (x)) //best practice
--> (a+1) * (a+1) ==> (5+1)*(5+1) = 36

printf("Compiled on %s at %s\n",
__DATE__, TIME_);

Practical Applications of Preprocessors

Debugging: Cross-Platform Code:
Use #ifdef DEBUG blocks to include
debugging information. #ifdef _WIN32
printf("Windows\n");
#else

#define DEBUG

#ifdef DEBUG
printf("Debugging info\n");

#endif

printf("Other OS\n");
#endif

#pragma Directive

e The #pragma directive is
used to give special
Instructions to the compiler,
such as enabling
optimizations, managing
warnings, or controlling
memory alignment. These
are compiler-specific and
may not be portable across
different compilers.

® Disabling/Enabling Warnings

#pragma warning(push)

#pragma warning(disable : 4996) // Disable a specific warning
printf("Warning disabled\n");

#pragma warning(pop) // Restore previous warning state

® Optimization Control

#pragma optimize("", off) // Turn off optimization void
my_function() {// code }

#pragma optimize("", on) // Turn on optimization

® Pack Struct Alignment:

#pragma pack(l) // Align structure members to 1-byte
boundaries

struct my_struct { char a; int b; };

#pragma pack() // Reset alignment to default

	Slide 1: Introduction to Computing String operations, Preprocessors
	Slide 2: Recap
	Slide 3: Character Arrays and Strings
	Slide 4: Character array and strings
	Slide 5: Strings and scanf
	Slide 6: String Operations (Two ways)
	Slide 7: String Operations Without using string.h
	Slide 8: More String Operations Without using string.h
	Slide 9: String Operations with #include<string.h>
	Slide 10: #include<string.h>
	Slide 11: More operations on strings
	Slide 12: Preprocessors/ Macro
	Slide 13: Preprocessor Directives in Depth
	Slide 14: Conditional Compilation
	Slide 15: Macro Functions & Predefined Macros
	Slide 16: Practical Applications of Preprocessors
	Slide 17: #pragma Directive

