
Introduction to Computing
String operations, Preprocessors

Recap

● Pointers
○ Value

○ Name

○ Address

○ Size and type of pointers

● Array and pointers

● Function and pointers

● Functions calling functions

● Recursion

● Passing Array to functions
○ Problems with sending size

● Character Array

● Strings

Character Arrays and Strings

● Character arrays are very useful in storing data
○ Even though they are basically integers underlying, but the range of the values are limited

○ This allows to have some additional functionalities (for convenience, of course)

○ Strings are declared and defined the same way as any other array types

○ Since the values are in range of 0-127 (sometimes more, but still, limited), we have the

convenience make some of the characters for special use such as:

■ newline(\n)

■ backspace (\b), etc.

○ In the case of character arrays we use a special character called the null character

■ Represented as ‘\0’ (backslash-zero)

■ Ascii value of this character is 0

■ It prints nothing on the computer screen

Character array and strings

● Character variable

○char ch1, ch2 = ‘a’;

● Character array

○ char ca1[10];

○ char ca2[3] = {‘S’,‘D’,‘B’};

○ char ca3[5] = {‘S’,‘D’,‘B’};

A string is a character array for which the last valid character is
the null character.
● char ca4[10] = {‘S’,‘o’,‘u’,‘m’,‘a’,‘d’,‘i’,‘p’,‘\0’};
● char ca5[10] = “Soumadip”;

○ Both the above statements are equivalent
○ This type of initialization makes sure that the null character is

automatically appended at the end

You can't do the following after declaration though
ca1 = "word1"; // not allowed – why?
ca4 = "word2"; // not allowed – what is the type of ca1 or ca4?

-- More on what can and can't be done, later

String is basically short for “a string of characters”

● A single character in C is written within single quotes e.g. ‘a’, ‘3’, ‘Z’, ‘%’, etc.
● A string is written in C within double quotes, e.g., “a_string”, “with spaces”, “and with $”,

etc.

Strings and scanf

● scanf also provides a shortcut for

strings format %s

○ scanf (“%s”, ch_arr); ⇒ this allows you to

read a string from user without spaces

○ scanf ("%[^ ^\n]%*c", ch_arr);

■ This is equivalent to %s; reads the

characters until space () or the newline

character (\n) is encountered

○ scanf ("%[^\n]%*c", ch_arr);

■ reads a string with spaces

until a newline(\n); so, it can

read strings with spaces

Note: All the method discussed

here will add a ‘\0’ to the end of the

scanned characters - making it a

string

String Operations (Two ways)

● Normal assignment operators do

not work on strings (Nor on any

kind of arrays for that matter)

● You need to define different

operation on strings by writing your

own functions
○ Compare two strings for equality

○ Copy one string to another

○ Concatenate two strings

○ Check if a input string is integer or float

● Alternatively, you can #include a new

header file called string.h and use

built-in functions for such operations

Some useful function prototypes are as follows:

int strlen(const char *str)

int strncmp(const char *str1,

const char *str2, int n)

char* strstr(const char *haystack,

const char *needle)

char* strcat(char *dest, const char *src)

String Operations Without using string.h

Solved Examples:
○ Finding string length

○ Concatenating strings

○ Comparing strings

Manual String Length:

int str_length(char str[]) {

int length = 0;

while (str[length] != '\0') {

length++;

}

return length;

}

Try yourselves
○ Copy one string to another

○ Check if a input string is integer or float

○ Duplicate strings

○ Change a string to uppercase/lowercase

More String Operations Without using string.h

Manual String Concatenation:

void concat(char dest[], char src[])
{

int i = 0, j = 0;
while (dest[i] != '\0') i++;
while (src[j] != '\0') {

dest[i] = src[j];
i++;
j++;

}
dest[i] = '\0';

}

Manual String Comparison:

int compare(char str1[], char str2[])

{

int i = 0;

while (str1[i] == str2[i] && str1[i] !=

'\0') i++;

if (str1[i] == '\0' && str2[i] == '\0')

return 0;

return str1[i] - str2[i];

}

String Operations with #include<string.h>

● Some Built-in Functions:

○ strlen(): String length

○ strcpy(): Copy strings

○ strcat(): Concatenate

strings

○ strcmp(): Compare strings

○ strstr(): Locate substring in

another string

Usage Example:

char str1[20] = "Hello";

char str2[20];

strcpy(str2, str1); // Copy str1 into str2

Find a Substring (strstr()):

char str[] = "I love programming";

char *sub = strstr(str, "love");

if (sub != NULL) {

printf("Found substring at: %s\n", sub);

}

Output: "Found substring at: love programming"

#include<string.h>

char str1[20]="A string", str2[20]="Another string"; char ch='r'; int n=4;

strlen (str1) // gives the length of the string ⇒ 8

strcpy (str2,str1) // copies str1 into str2

strncpy (str2, str1, n) // copies first n characters from str1 into str2

strcmp (str1, str2) // returns 0 if both strings are the same

strcmpi (str1, str2) // compares two strings ignoring the case

strcat (str1, str2) // concatenates str2 at the end of str1

strchr (str1, ch) // finds the position(pointer) of first ch in str1

Link to more/all string.h functions with examples.

https://www.ibm.com/docs/en/i/7.4?topic=files-stringh

More operations on strings

● Split strings into words

● Split strings based on a given

delimiter

● Find the longest string in an array

of strings

● Sort an array of strings

alphabetically

● Counting Words in a Sentence

● Join an array of words into a single

string with space

Useful ways to handle multiple

strings in your code

▪ Array of strings

char arr[3][10] = {"IACS", "UG", "2020"};

▪ Array of pointers to strings

char *arr[] = {"IACS", "UG", "2020"};

--- we will learn more on these^^^

declarations later

Preprocessors/ Macro

● Preprocessor is not a part of the

compiler

● It is a step in the compilation

process

● a C Preprocessor is just a text

substitution tool

● It instructs the compiler to do

required pre-processing before the

actual compilation

● They are also known as macro

Examples:

● #inlcude <string.h>

● #define SIZE 10

● #define SQUARE(x) ((x)*(x))

● #ifdef <macro>.. #endif

● etc.

Preprocessor Directives in Depth

● #define: Used to define symbolic

constants or macros.
○ Example: #define PI 3.14
○ Usage: Replace PI with 3.14 throughout

the code.

● #include: Used to include header

files.
○ Example: #include <stdio.h>

○ Usage: Inserts the content of the specified

file into the program before compilation.

● #undef: Undefine a previously

defined macro.
○ Example: #undef PI

● #ifdef and #ifndef: Conditional

compilation based on whether a macro is

defined or not.
○ Example:

#define PI 3.14

#ifdef PI

printf("PI is defined\n");

#endif

#undef PI

#ifndef PI

printf("PI is not defined\n");

#endif

Conditional Compilation

● #if, #elif, #else, #endif
○ Allows sections of code to be

conditionally included or excluded.

● Advantages:
○ Helps in debugging by selectively

compiling parts of the code.

○ Allows platform-specific code.

#define LEVEL 2

#if LEVEL == 1
printf("Beginner level\n");

#elif LEVEL == 2
printf("Intermediate level\n");

#else
printf("Advanced level\n");

#endif

Macro Functions & Predefined Macros

● Defining Macros with Arguments:
#define SQUARE(x) ((x)*(x))

● Best Practices: Use parentheses
around macro arguments to avoid
precedence issues.

Common Predefined Macros:

● __FILE__: Current file name.

● __LINE__: Current line number.

● __DATE__: Compilation date.

● __TIME__: Compilation time.

printf("Compiled on %s at %s\n",

__DATE__, __TIME__);

int a = 5; int result = SQUARE(a + 1);

#define SQUARE(x) x * x //bad practice

--> a + 1 * a + 1 ==> 5 + 1*5 +1 = 11

#define SQUARE(x) ((x) * (x)) //best practice

--> (a+1) * (a+1) ==> (5+1)*(5+1) = 36

Practical Applications of Preprocessors

Debugging:

Use #ifdef DEBUG blocks to include

debugging information.

#define DEBUG

#ifdef DEBUG

printf("Debugging info\n");

#endif

Cross-Platform Code:

#ifdef _WIN32

printf("Windows\n");

#else

printf("Other OS\n");

#endif

#pragma Directive

● The #pragma directive is

used to give special

instructions to the compiler,

such as enabling

optimizations, managing

warnings, or controlling

memory alignment. These

are compiler-specific and

may not be portable across

different compilers.

● Disabling/Enabling Warnings

#pragma warning(push)
#pragma warning(disable : 4996) // Disable a specific warning

printf("Warning disabled\n");

#pragma warning(pop) // Restore previous warning state

● Optimization Control

#pragma optimize("", off) // Turn off optimization void

my_function() { // code }

#pragma optimize("", on) // Turn on optimization

● Pack Struct Alignment:

#pragma pack(1) // Align structure members to 1-byte

boundaries
struct my_struct { char a; int b; };

#pragma pack() // Reset alignment to default

	Slide 1: Introduction to Computing String operations, Preprocessors
	Slide 2: Recap
	Slide 3: Character Arrays and Strings
	Slide 4: Character array and strings
	Slide 5: Strings and scanf
	Slide 6: String Operations (Two ways)
	Slide 7: String Operations Without using string.h
	Slide 8: More String Operations Without using string.h
	Slide 9: String Operations with #include<string.h>
	Slide 10: #include<string.h>
	Slide 11: More operations on strings
	Slide 12: Preprocessors/ Macro
	Slide 13: Preprocessor Directives in Depth
	Slide 14: Conditional Compilation
	Slide 15: Macro Functions & Predefined Macros
	Slide 16: Practical Applications of Preprocessors
	Slide 17: #pragma Directive

