
Introduction to Computing
Recursion, Basics of Strings

Recap

● Array
○ Declaration

○ Initialization

○ Assignment

○ Accessing elements of array

● Pointers
○ Another type of variable

○ Can hold memory address of some

variable

○ The scanf case

● Some example codes using array
○ Print all elements of array

○ Scan elements into array

○ Find the minimum from array

○ Search for a key element in an array

Pointers (recap)

● <type> *<name>; ⇒ declaration syntax

of pointer variable

● Pointer variable value can be accessed

using <name>

● Access the value at the stored address

using *<name> ⇒ treat the value at the

stored location as the declared <type>

● Access the memory address of the

pointer variable using &<name>

int a=10; int *ptr;

printf (“%d”, a); ⇒ 10

printf (“%p”, &a); ⇒ address of a

ptr = &a;

printf (“%p”, ptr); ⇒ ?

printf (“%d”, *ptr); ⇒ ?

printf (“%p”, &ptr); ⇒ ?

Functions and Pointers (refresher)

● Since variables passed to the

functions are basically a copy

● Pointers to the variables are used

instead of a variable to pass the

reference to a variable - only when

required
○ Addresses of the variable is copied

○ Changes made by function are done to

the memory address

○ So when function exits, it only forgets

the memory location and not the

changes made ot that location

void swap (int a, int b)

{

int tmp;

tmp = a;

a = b;

b = tmp;

}

void swap (int *a, int *b)

{

int tmp;

tmp = *a;

*a = *b;

*b = tmp;

}

So, Let’s recall Swap

Array and Functions (refresher)

Array

int arr[8] = {12, 14, 1, -2, 6, 91, 200, 10}

○ Print all elements of an array in reverse

order

○ Print elements of an array within a given

range e.g. 2-6

○ Print all elements of an array that are

positive

○ Print all elements of an array that are

even

Functions
<ret_type> <name> (param1, param2, …)

Write a function for the following function

definitions

○ f(x) = x2 + 10

○ g(x, y) = (x + y)2

○ factorial(n) = n!

○ permutations(n,r) = nPr

○ combinations(n,r) = nCr

○ A function that returns the mean of all

elements in an array of integers

Array (contd.)

10 20 35 47 3 7 -10 100

Array declaration syntax:

<type> <name>[<size>];
e.g. int arr[8];

1002 1006 100A 100E 1012 1016 101A 101E

4098 4102 4106 4110 4114 4118 4122 4126

Hexadecimal

Decimal equivalent

Integer

array

0 1 2 3 4 5 6 7

Memory

address

index

arr[3] &arr[3]
Name of array

&arr[0]

Access elements using index

arr[0], arr[1], … arr[7]
Size of array == number of elements
(size=n) implies that the indexes are

from 0 to n-1

number of

elements in
the array

Data assignment examples:

arr[5] = 7;

scanf("%d", &arr[3]);

Consider

sizeof int = 4

then

sizeof arr = 4*8 = 32

Passing Array to Functions

● Array is a memory block

● Array variable is basically the first

address of the entire memory block

● The size of the block is known only

to the function the array is defined

in

● If you pass array to a function, only

the address of the memory block is

copied, and nothing else

Example:

int A [10];

sizeof (A) ⇒ 10 * sizeof (int)

Call func (A)

In the function func

void func (int arr[])

{

sizeof (arr) ⇒ sizeof (int*)

}

Passing Array to Functions – Two ways

Assume sizeof(int) = 4 and sizeof (int*) = 8

int A [10];

sizeof (A) ⇒ 4*10 = 40

● Call func1(A)

● Call func2(A)

Another way

● void func2 (int *arr)

{

sizeof (arr) ⇒ Also sizeof (int*)=8

}

So, to pass an array properly you need

to pass the size (desired) of the array as

well.

● void f (int arr[], int n)

● void f2 (int *arr, int n)

There is an

exception to this
rule for char array
– we will discuss

that shortly

One way

● void func1 (int arr[])

{

sizeof (arr) ⇒ sizeof (int*)=8

}

Functions Calling Functions (type 1)

● int f1() {...}

● int f2()

{...

f1();

…}

● int f3() {... f2(); …}

● int f4() {... f3(); …}

● int f5() {... f2(); …}

int factorial (n)
{

int i, result = 1;
for (i=1; i<=n; i++)

result *= i;
return result;

}

permutations(n,r) = nPr // Can be written as follows:
⇒ factorial(n)/factorial(n-r)

combinations(n,r) = nCr
⇒ ?

Functions Calling Functions (type 2)

int f6() {... f7(); …}

int f7() {... f6(); …}

int f8() {... f8(); …}

These are basically never ending calls

to one another

→ can this happen?

Factorial definition (from math)

f(n) = n*f(n-1) //recursion

f(0)=1 //base case

int factorial (n)

{

if (n==0) //base case

return 1;

else

return n* factorial(n-1); //recursion

}

Recursion

● A function calling itself
○ Directly call made to self

○ Indirectly call made to self via another

function

○ Indirectly call made to self via a

sequence of function calls

● This is known as recursion
○ Both in mathematics and in

programming

● Examples
power(n, a) = n*power(n,a-1)

power(0)=1

f(n) = f(n-1) + f(n-2)

f(0)=0, f(1)=1

→ what function is this?

f(x) = x * g(x)

g(x) = 2 + f(x-1)

⇒ f(x) = x * 2 + x * f(x-1)

Recursion (contd.)

Recursive solution template

● You need to first define the base cases

(exit condition) for your function

● Then you write the recursive logic of the

rest of the function

● For breaking the call sequence of a

recursive function
○ a return statement is generally used with

some if condition

○ You can also use if-else

● Requires careful coding

● Needs to make sure that your

program terminates

● DIY Exercise using recursion:
○ Implement the GCD function

○ Implement the power function

○ Implement sum of an integer

array

○ Search an element in an array

○ Count the number of vowels in a

character array/string

Characters and ASCII codes

● Recall computer can only store

numbers

● Characters are interpreted as

integers numbers called ASCII code

● These codes are stored in place of

each character
○ a-z, A-Z, 0-9,special characters (!, @, #, $,

...), \n, \b, \r, \t, etc.

○ The standard ASCII code ranges from 0 to

127 (7 bits long)

○ The extended ASCII code ranges from 128

to 255 (8 bits long)

// use for loop to print the capital letter from A to Z

for (int code = 65; code< 91; code++)
{

printf (" \n The ASCII value of %c is %d ", code, code);

}

Outputs:
The ASCII value of A is 65

The ASCII value of B is 66

The ASCII value of C is 67
The ASCII value of D is 68

...
The ASCII value of Z is 90

Doing the same for small letters, another way
for (int letter = 'a'; letter<= 'z'; letter++)

{
printf (" \n The ASCII value of %c is %d ", letter, letter);

}

Character Arrays or Strings

● Character arrays (aka Strings) are very useful in storing data
○ Even though they are basically integers underlying, but the range of the values are limited

○ This allows to have some additional functionalities (for convenience, of course)

● Strings are declared and defined the same way as any other array types
○ Since the values are in range of 0-127 (sometimes more, but still, limited), we have the

convenience make some of the characters for special use such as:

■ newline(\n)

■ backspace (\b), etc.

○ In the case of character arrays we use a special character called the null character

■ Represented as ‘\0’ (backslash-zero)

■ Ascii value of this character is 0

■ It prints nothing on the computer screen

Strings - Initialization

● char ch = ‘a’;

● char ch_arr[10] = {‘S’, ‘o’, ‘u’, ‘m’, ‘a’, ‘d’, ‘i’, ‘p’, ‘\0’};

● char name[10] = “Soumadip”; //the above one is equivalent
○ This type of initialization makes sure that the null character is appended at the end

● String is basically short for “a string of characters”
○ A single character in C is written within single quotes e.g. ‘a’, ‘3’, ‘Z’, ‘%’, etc.

○ A string is written in C within double quotes e.g. “a_string”, “with spaces”, “and with $”, etc.

● Scanf also provides a shortcut for strings format %s
○ scanf (“%s”, ch_arr); ⇒ this allows you to read a string from user (without spaces)

○ scanf ("%[^\n^]%*c", ch_arr); ⇐%s is equivalent to this, is a blank space

■ ^This tells scanf to read characters as long as a newline (\n) or a space () is not

encountered

○ Similarly, scanf ("%[^\n]%*c", ch_arr); ⇐ reads a string with spaces until a newline(\n)

Next Week…

● More on strings

● User defined datatypes

	Slide 1: Introduction to Computing Recursion, Basics of Strings
	Slide 2: Recap
	Slide 3: Pointers (recap)
	Slide 4: Functions and Pointers (refresher)
	Slide 5: Array and Functions (refresher)
	Slide 6: Array (contd.)
	Slide 7: Passing Array to Functions
	Slide 8: Passing Array to Functions – Two ways
	Slide 9: Functions Calling Functions (type 1)
	Slide 10: Functions Calling Functions (type 2)
	Slide 11: Recursion
	Slide 12: Recursion (contd.)
	Slide 13: Characters and ASCII codes
	Slide 14: Character Arrays or Strings
	Slide 15: Strings - Initialization
	Slide 16: Next Week…

