
Introduction to Computing
Array and Pointers

Array

● Many applications require multiple

data items that have common

characteristics
In mathematics, we often express such

groups of data items in indexed form:

■ x1, x2, x3, …, xn

● Array is a data structure which

represents a collection of data

items of the same datatype (e.g.

float/int/char/…)

Example:

int A[5], i;

for (i = 0; i < 5; ++i)

scanf(“%d”, &A[i]);

for (i = 0; i < 5; ++i)

printf(“%d”, A[i]);

Array(contd.)

● Declaration
○ <type> <name>[<no_of_elements>]

○ int a[100];

○ float b[20];

● Initialization
○ int a[5] = {2,4,5,2,6};

○ int b[4] = {1,3,5}

● Accessing an element of array
○ a[2] →5

○ b[0] →1

○ b[3] → ?

○ a[5] →?

● Assignment of value later on in the

program
○ It is same as a normal variable

○ b[3] = 3.14;

○ a[2] = 1000;

● A single variable has a name

● An array variable has a <name>
○ It’s a collection of single variables

○ Variables are accessed using <index>

○ Therefore, <name>[<index>] is a

specific variable in an array

Array (contd.)

10 20 35 47 3 7 -10 100

Array declaration syntax:

<type> <name>[<size>];
e.g. int arr[8];

1002 1006 100A 100E 1012 1016 101A 101E

4098 4102 4106 4110 4114 4118 4122 4126

Hexadecimal

Decimal equivalent

Integer

array

0 1 2 3 4 5 6 7

Memory

address

index

arr[3] &arr[3]
Name of array

&arr[0]

Access elements using index

arr[0], arr[1], … arr[7]
Size of array == number of elements
(size=n) implies that the indexes are

from 0 to n-1

number of

elements in
the array

Data assignment examples:

arr[5] = 7;

scanf("%d", &arr[3]);

Consider

sizeof int = 4

then

sizeof arr = 4*8 = 32

Array – examples to try

● Print all elements of an array

● Scan elements into an array

● Copy elements of on array into

another

● Sum of all elements in an array

● Multiply all elements in an array

● Find Min/Max element in an array

● Search for an element in an array

● Sum two equal-sized arrays

element-wise, and store the

results in another array

● Find minimum of a set of

10 numbers

● Write the code in a way so

that the code works for a

set of any given number

(i.e. not only 10)

Array (contd.)

Write the code in a way so that the code works for a set of any given number (i.e. not
only 10)

● Recall const qualifier
○ const int size = 10;

int A[size], i;
for (i = 0; i < size ; ++i)

scanf(“%d”, &A[i]);

● Another way …
○ #define SIZE 10
○ This is called a preprocessor/macro -- we will learn about

preprocessors later in the course

Searching for an Element (key) in an Array

● You have an array filled with integer elements
○ Can be hard coded

○ Can be user input

○ Can be read from file <we will see how later how>

● You take an integer (key) user input from user

● Search through the array to check if the key exists in the array
○ Go through the array one element at a time in using a loop

○ Check is the element matches the key or not

● Print appropriate message to show the result of the exercise

● This is called a linear search

Functions (recall)

Passing of variables

● Variables values are copied when

then are passed (by calling) to a

function

● The actual variables are not passed

● So a change made to a variable

within a function will not reflect in

the variable at the end of the caller

– recall the swap function

● But scanf, which is also a function,

is able to change the values of a

local variable – How does it do it?

● Recall the AddressOf (&) operator

○ scanf (“%d”, &a);

○ it sends (copies) the memory address of

a variable

○ scanf makes change in that memory

location

○ thereby changing the value of the

variable

Pointers

● Each memory cell (byte) has an unique address

● Each memory cell can hold a value

● Contiguous memory cells have sequential addresses

100 101 102 103 104 105

Value

… 42 10

Address

Name

500

1024

x

Pointers

● Pointers are a special variables that

can store memory addresses

● Declaration of a pointer variable

○ <type> *<name>;

○ Variable value (memory address)

can be accessed using <name>

● Access the value at the stored

address

○ *<name>

○ It will treat the value at the

stored location as the declared

<type>

Examples:

//actual variables
int a; float b; char c;
//pointer variables
int *iptr; float *fptr; char *cptr;

a = 10; //set value of a as 10
iptr = &a; //address of variable a

printf("%p", iptr); // will print address of a
printf("%d", *iptr); // will print value of a

Pointers (contd.)

int a=10; // a is an integer variable, initialized with value 10

int *ptr; // ptr is an integer pointer variable, uninitialized

printf (“%d”, a); ⇒ 10

printf (“%p”, ptr); ⇒ <some garbage value as an memory address>

printf (“%p”, &a); ⇒ memory address of the variable a

printf (“%p”, &ptr); ⇒ memory address of the variable ptr

ptr = &a; //stores the address of a on ptr

printf (“%p”, ptr); ⇒ value of ptr / address of the variable a

printf (“%d”, *ptr); ⇒ access data as integer at the location stored in ptr

printf (“%p”, &ptr); ⇒ the address of the variable ptr; remains the same

Pointer types: Size

● It depends on the maximum possible number value for address in a

machine

● A 64-bit processor allows the machine to have 64 bit address - so it

needs 8 bytes to store that address
○ sizeof (int) ⇒ 4, sizeof (int*) ⇒ 8

○ sizeof (char) ⇒ 1, sizeof (char*) ⇒ 8

○ sizeof (double) ⇒ 8, sizeof (double*) ⇒ 8

○ sizeof (long double) ⇒ 16, sizeof (long double*) ⇒ ?

You can check using

printf("%ld %ld", sizeof (long double), sizeof (long double*))

Pointer Arithmetic

int a; //consider sizeof int as 8
int *ptr = &a;

ptr + 1 will be translated as value stored in ptr + sizeof int
ptr + 2 will be translated as value stored in ptr + 2 * sizeof int
i.e., ptr+i will be translated as value stored in ptr + (i * sizeof int)

Similarly for char *cptr; cptr+i will yield value stored in cptr + (i * sizeof char),
for double *dptr; dptr+i will yield value stored in dptr + (i * sizeof double), etc.

<type>* ptr + <int_val> is equivalent to ptr + <int_val> * sizeof(<type>)

1000 1008 100A

ptr ptr+1 ptr+2
pointer + integer

Array and Pointers

● Array elements are accessed using indexes
○ int arr[10];

■ Allocates a memory block equal to the size of 10 integers in total

■ Elements accessed as arr[0], arr[1], etc.

○ The arr is the address of the entire memory block; it is of type int* (read

as integer pointer)

○ Therefore It can also be accessed similar to pointers variables

○ So *arr is arr[0]

■ How do you access the rest? → you can use pointer arithmetic

Array and Pointers (contd.)

● Adding 1 to a pointer variable means increasing the value of the pointer by

the size of the type of that pointer

● Adding 1 to an int* variable means adding sizeof(int) to the value of the

variable

So,

arr[1] == *(arr + 1), arr[2] == *(arr + 2), ...

i.e., arr[i] = *(arr + i)

Also,

arr + i = &arr[i]

Functions and Pointers

● Since variables passed to the

functions are basically a copy

● Pointers to the variables are used

instead of a variable to pass the

reference to a variable - only when

required
○ Addresses of the variable is copied

○ Changes made by function are done to

the memory address

○ So when function exits, it only forgets

the memory location and not the

changes made ot that location

void swap (int a, int b)

{

int tmp;

tmp = a;

a = b;

b = tmp;

}

void swap (int *a, int *b)

{

int tmp;

tmp = *a;

*a = *b;

*b = tmp;

}

So, Let’s recall Swap

In The Next Class…

● You will learn about functions and arrays

● You will learn about structures

● You will learn about strings

	Slide 1: Introduction to Computing Array and Pointers
	Slide 2: Array
	Slide 3: Array(contd.)
	Slide 4: Array (contd.)
	Slide 5: Array – examples to try
	Slide 6: Array (contd.)
	Slide 7: Searching for an Element (key) in an Array
	Slide 8: Functions (recall)
	Slide 9: Pointers
	Slide 10: Pointers
	Slide 11: Pointers (contd.)
	Slide 12: Pointer types: Size
	Slide 13: Pointer Arithmetic
	Slide 14: Array and Pointers
	Slide 15: Array and Pointers (contd.)
	Slide 16: Functions and Pointers
	Slide 17: In The Next Class…

