Introduction to Computing

Array and Pointers

Array

e Many applications require multiple
data items that have common

characteristics
In mathematics, we often express such
groups of data items in indexed form:
B Xy, X, Xg, ..ny X

e Array is a data structure which
represents a collection of data
items of the same datatype (e.g.
float/int/char/...)

Example:
int A[5], i;

for (i = 0; i < 5; ++i)
scanf(“%d”, &A[i]);

for (I=0;1<5; ++i)
printf(“%d”, A[i]);

Array(contd.)

e Declaration e Assignment of value later on in the
o <type><name>[<no_of elements>] program
o inta[100]; o Itis same as a normal variable
o float b[20]; o b[3]=3.14;
e |nitialization o a[2] =1000;
o inta[5]={2,4,5,2,6}; e A single variable has a name
o ?[4] ~ ot e An array variable has a <name>
e Accessing an element of array o It's a collection of single variables
o a[2] -5 o Variables are accessed using <index>
o b[0] —1 o Therefore, <name>[<index>] is a
o b[3] -7 specific variable in an array
o a[5] »?

Array (contd.)

number of Access elements using index

Array declaration syntax: e|<r3]ments in 0
: the arra ==
e.g ;SIZe> -) implies that the

&arr[0
Name of array [0] Data assignment examples:

Integer 0 Consider
10 20 35 47 3 { -10 100 sizeof int=4

array
[then

0 1 2 3 4 > 6 / sizeof arr = 4*8 = 32

1002 1006 100A 100E 1012 1016 101A 101E ot
address

4098 4102 4106 4110 4114 4118 4122 4126

Array — examples to try

Print all elements of an array
Scan elements into an array
Copy elements of on array into
another

Sum of all elements in an array
Multiply all elements in an array
Find Min/Max element in an array
Search for an element in an array
Sum two equal-sized arrays
element-wise, and store the
results in another array

Find minimum of a set of
10 numbers

Write the code in a way so
that the code works for a
set of any given number
(i.e. not only 10)

Array (contd.)

Write the code in a way so that the code works for a set of any given number (i.e. not
only 10)

e Recall const qualifier
O constint size = 10;
int A[size], i;
for (i=0; i< size ; ++i)
scanf(“%d”, &Ali]);
e Another way ...
o #define SIZE 10

o This is called a preprocessor/macro -- we will learn about
preprocessors later in the course

Searching for an Element (key) in an Array

e You have an array filled with integer elements
o Can be hard coded
o Can be user input
o Can be read from file <we will see how later how>

e You take an integer (key) user input from user

e Search through the array to check if the key exists in the array

o Gothrough the array one element at a time in using a loop
o Check is the element matches the key or not

e Print appropriate message to show the result of the exercise
e This is called a linear search

Functions (recall)

Passing of variables

e Variables values are copied when
then are passed (by calling) to a
function

e The actual variables are not passed

e So a change made to a variable
within a function will not reflect in
the variable at the end of the caller
— recall the swap function

But scanf, which is also a function,
IS able to change the values of a
local variable — How does it do it?
Recall the AddressOf (&) operator
o scanf (“%d”, &a);
o it sends (copies) the memory address of
a variable
o scanf makes change in that memory
location

o thereby changing the value of the
variable

Pointers

e Each memory cell (byte) has an unique address
e Each memory cell can hold a value
e Contiguous memory cells have sequential addresses

Value X~ O\
42 10 ... Name
\\ 1024

100 101 102 103 104 105 Address £00
_/

Pointers

e Pointers are a special variables that
can store memory addresses
e Declaration of a pointer variable
o <type>*<name>;
o Variable value (memory address)
can be accessed using <name>

e Access the value at the stored
address
o *<name>
o |t will treat the value at the
stored location as the declared

<type>

Examples:

[[actual variables

int a; float b; char c;

//pointer variables

int *iptr; float *fptr; char *cptr;

a = 10; //set value of a as 10
Iptr = &a; /laddress of variable a

printf("%p", iptr); // will print address of a
printf("%d", *iptr); // will print value of a

Pointers (contd.)

int a=10; // ais an integer variable, initialized with value 10

int *ptr; // ptr is an integer pointer variable, uninitialized

printf (“%d”, a); = 10

printf (“%p”, ptr); = <some garbage value as an memory address>
printf (“%p”, &a); = memory address of the variable a

printf (“%p”, &ptr); = memory address of the variable ptr

ptr = &a; //stores the address of a on ptr

printf (“%p”, ptr); = value of ptr / address of the variable a

printf (“%d”, *ptr); = access data as integer at the location stored in ptr
printf (“%p”, &ptr); = the address of the variable ptr; remains the same

Pointer types: Size

» It depends on the maximum possible number value for address in a

machine
o A 64-bit processor allows the machine to have 64 bit address - so it

needs 8 bytes to store that address

o sizeof (int) = 4, sizeof (int*) = 8

o sizeof (char) = 1, sizeof (char*) = 8

o sizeof (double) = 8, sizeof (double*) = 8

o sizeof (long double) = 16, sizeof (long double*) = ?

You can check using
printf("%ld %ld", sizeof (long double), sizeof (long double*))

Pointer Arithmetic

int a; /[consider sizeof int as 8

pointer + infeger

ptr + 1 will be translated as value stored in ptr + sizeof int
ptr + 2 will be translated as value stored in ptr + 2 * sizeof int
l.e., ptr+i will be translated as value stored in ptr + (i * sizeof int)

Similarly for char *cptr; cptr+i will yield value stored in cptr + (i * sizeof char),
for double *dptr; dptr+i will yield value stored in dptr + (i * sizeof double), etc.

<type>* ptr + <int_val> is equivalent to ptr + <int_val> * sizeof(<type>)

Array and Pointers

e Array elements are accessed using indexes
o intarr[10];
= Allocates a memory block equal to the size of 10 integers in total
s Elements accessed as arr[0], arr[1], etc.
o The arr is the address of the entire memory block; it is of type int* (read
as integer pointer)
o Therefore It can also be accessed similar to pointers variables
o So *arr is arr[0]
s How do you access the rest? — you can use pointer arithmetic

Array and Pointers (contd.)

e Adding 1 to a pointer variable means increasing the value of the pointer by
the size of the type of that pointer

e Adding 1 to an int* variable means adding sizeof(int) to the value of the
variable

So,
arr[1] == *(arr + 1), arr[2] == *(arr + 2), ...
l.e., arr[i] = *(arr + 1)
Also,
arr + 1 = &arrfi]

Functions and Pointers

e Since variables passed to the So, Let’s recall Swap
functions are basically a copy
e Pointers to the variables are used void swap (int a, int b) void swap (int *a, int *b)

iInstead of a variable to pass the { {
reference to a variable - only when Int tmp; Int tmp;

o — . — %A
required tmp = &; imp - a;
o Addresses of the variable is copied a=b; a="*b;
o Changes made by function are done to b = tmp; *b = tmp;

the memory address } }

o So when function exits, it only forgets
the memory location and not the
changes made ot that location

In The Next Class...

e You will learn about functions and arrays
e You will learn about structures
e You will learn about strings

	Slide 1: Introduction to Computing Array and Pointers
	Slide 2: Array
	Slide 3: Array(contd.)
	Slide 4: Array (contd.)
	Slide 5: Array – examples to try
	Slide 6: Array (contd.)
	Slide 7: Searching for an Element (key) in an Array
	Slide 8: Functions (recall)
	Slide 9: Pointers
	Slide 10: Pointers
	Slide 11: Pointers (contd.)
	Slide 12: Pointer types: Size
	Slide 13: Pointer Arithmetic
	Slide 14: Array and Pointers
	Slide 15: Array and Pointers (contd.)
	Slide 16: Functions and Pointers
	Slide 17: In The Next Class…

