
Introduction to Computing
Conditional and Looping Statements

Recap

● Expressions
○ Arithmetic

○ Assignment

○ Logical

● Special operators
○ SizeOf

○ AddressOf (&)

● Typecasting

● Statements
○ Declaration

○ Assignment

○ Control

■ Branching

■ Looping

○ Input /Output

Statements in a C Program

● Parts of C program that tell the computer what to do

● Types of statements

○ Declaration statements – Declares variables etc.

○ Assignment statement – Assignment expression, followed by a ';'

○ Control statements – For branching and looping

■ Branching - if-else, switch

■ Looping - for, while, do while

○ Input/Output – Read/print, like printf/scanf

Statements (contd.)

● Compound statements

○ A sequence of statements enclosed within { and }

○ Each statement can be an assignment statement, control

statement, input/output statement, or another compound

statement

○ We will also call it block of statements sometimes

informally

Conditional Statements

How do we specify conditions?

● Using expressions
○ non-zero value means the

condition is true

○ zero value means the condition

is false

● Usually logical expressions, but

can be any expression
○ The value of the expression will

be used

● Allow different sets of

instructions to be executed

depending on truth or falsity

of a logical condition

aka. Branching

The if Statement

if (expression)

compound statement;

if (expression)

statement;

The condition to be tested is any

expression enclosed in

parentheses. The expression is

evaluated, and if its value is non-

zero, the statement is executed.

if (expression)

{

statement 1;

…

statement n;

}

if else Statement

if (expression)

statement/compound statement;

else if (expression)

statement/compound statement;

else

statement/compound statement;

if (expression)

statement/compound statement;

else

statement/compound statement;

Example:

Grade Computation

Find the larger of two numbers

Find the largest of three numbers

Nested if else

● It is not necessary for all if statements to have

an else part

● Every else gets matched to the closest

preceding unmatched if statement

● It’s very easy to create confusion while writing

a nested if-else

● So it is always a good idea to use parentheses

to avoid any ambiguity

Ambiguous statement

if (expression)

if (expression)

statement;

else

statement;

The conditional operator ?:

int x = 10, y = 20, max;

if (x > y)

max = x;

else

max = y;

Another way of writing if else statement

<condition> ? <expression1> :
<expression2>;

● If condition is true then expression1 is
executed

● If condition is false then expression2 is
executed

…used for convenience

Using conditional operator…

max = (x > y) ? x : y;

The switch statement

● This statement can be used instead

of writing lot of if else statement

● You can provide statements

for different cases

● switch statement will match the

value of expression with the case

number and execute statements

from that point onwards

i.e. All statements below a matched

case is executed

switch (<expression>)

{

case <const-expr> : <statements>

case <const-expr> : <statements>

…

case <const-expr> : <statements>

default : <statements>

}

Example: Evaluation of expressions

The break statement

● The break statement takes the

sequence of execution out of the

block
○ Works with looping as well

● switch-case does not work

exactly like a if else if else if…

● We use break statements to mimic

the behaviour

switch (<integer_value>)

{

case <integer> : <statements>

break;

case <integer> : <statements>

break;

…

case <integer> : <statements>

break;

default : <statements>

}

Looping Statements

● Group of statements that

are executed repeatedly

while some condition

remains true

● Each execution of the

group of statements is

called an iteration of the

loop

Examples:

● Read 5 integers and display

their sum

● Find the smallest number

among 100 integers

● Grade computation for entire

class

● Calculate factorial of a number

The while statement

● The condition to be tested is any

expression enclosed in

parentheses

● The expression is evaluated, and if

its value is non-zero, the statement

is executed

● Then the expression is evaluated

again and the same thing repeats

● The loop terminates when the

expression evaluates to 0

while (expression)

statement;

while (expression)

<Compound statement>

The while statement (contd.)

Examples

● Sum of the first N natural numbers

● Sum of the squares of the first N natural numbers

● Compute GCD of two numbers

● Calculate maximum of many positive numbers

● Compute the sum of digits of a number

The for statement

for (expr1; expr2; expr3)

statement;

for (expr1; expr2; expr3)

<Compound statement>

● expr1 (init) : initialize parameter(s)

● expr2 (test): test condition, loop

continues if expression is non-

zero

● expr3 (update): used to alter the

value of the parameter(s) after

each iteration

● statement (body): body of loop

The for statement (contd.)

Example: Computing Factorial

int i, n=10, result;

for(i=1, result=1; i <= n; i++)

result *= i;

printf("%d", result);

Try for yourself → Sum of N

natural numbers

Equivalence of for and while ⇒

for (expr1; expr2; expr3)

<statement(s)>

expr1;

while (expr2)

{

<statement(s)>

expr3;

}

The do while statement

● Another way of doing

looping

● Used for convenience

Example:

Decimal to binary conversion ⇒

do {

statement/compound statement;

}while (expression);

int decimal=10, binary=0, rem, i=1;

do {

rem = decimal%2;

binary = (rem * i) + binary;

decimal = decimal/2;

i = i*10;

} while (decimal != 0);

Illustrative Example

Infinite loops and the break statement

● while (1)

{ statements }

● for (; ;)

{ statements }

● do

{ statements } while (1);

● Use break statement to come out of

the loop body

○ can be used with while, do

while, for, switch

○ does not work with if, else

● Causes immediate exit from a

while, do/while, for or switch

structure

● Program execution continues

with the first statement after

the structure

The continue statement

● Skips the remaining statements in the body of a while, for or

do/while structure

○ Proceeds with the next iteration of the loop

● while and do/while loop

○ Loop-continuation test is evaluated immediately after the continue

statement is executed

● for loop
○ expr3 is evaluated, then expr2 is evaluated

	Slide 1: Introduction to Computing Conditional and Looping Statements
	Slide 2: Recap
	Slide 3: Statements in a C Program
	Slide 4: Statements (contd.)
	Slide 5: Conditional Statements
	Slide 6: The if Statement
	Slide 7: if else Statement
	Slide 8: Nested if else
	Slide 9: The conditional operator ?:
	Slide 10: The switch statement
	Slide 11: The break statement
	Slide 12: Looping Statements
	Slide 13: The while statement
	Slide 14: The while statement (contd.)
	Slide 15: The for statement
	Slide 16: The for statement (contd.)
	Slide 17: The do while statement
	Slide 18: Illustrative Example
	Slide 19: Infinite loops and the break statement
	Slide 20: The continue statement

