
Introduction to Computing
Expressions

Recap

● Computation
○ How do computers compute - Von Neumann Architecture

● How do computer store data - memory
○ Bits and Bytes

○ There is a unique memory address for each Byte

● What can computer store - numbers
○ Binary number system

○ Operations on binary numbers

● Data, Information

Recap (contd.)

● Computer Programming

● Computer Programming Languages
○ Machine language - set of instructions

○ High-level programming languages - C, C++, Python

● Steps of Programming
○ Write a program using high-level programming language

○ Compile a program using a compiler to get the machine understandable code

○ Execute the program on machine

○ Anatomy of Programming

Anatomy of Programming

● Represent the problem formally

● Take a decision

○ Some tasks based on the decision

○ Evaluate outcomes

● Repeat until problem is solved.

Structure of a C Program

● They are a collection of functions

● Exactly one special function called “main” which must

be present

● Each function has statements

○ e.g. declaration, assignment, condition check, looping

○ Statements are executed one by one

The Customary First C Code

͎ The preprocessor

͎ A function definition

͎ Start of the function

͎ A comment

͎ A function call

͎ A return value

͎ End of the function

#include <stdio.h>

int main (void)

{

/* my first program in C */

printf ("Hello, World! \n");

return 0;

}

Things One Might Use in C Programming

● Variables

● Constants

● Expressions
○ Arithmetic, Logical, Assignment

● Statements
○ Declaration, Assignment,

○ Control Structures - conditional branching, looping

● Arrays

● Pointers

● Functions

● Structures

Variables and Constants

● A variables has a name, a memory address and a datatype

● Name
○ A sequence of letter and digits with first symbol being a letter or ‘_’

● Types of Variables
○ int, float, double, char, struct, pointer, array, void, etc

● Variables stored in memory
○ Therefore, each variable has an unique address

○ Each type has a predefined size - typically they have standard values, but sometimes it may

depend on the software/system you are using

● Constants are basically read-only variables
○ Values, once assigned, cannot be changed

Expressions

● Variables and constants

linked with operators

● Every expression

evaluates to a value

● Arithmetic expressions
○ Uses arithmetic operators

○ Can evaluate to any value

● Logical expressions

○ Uses relational and logical operators

○ Evaluates to 0 (false) or 1 (true) only

● Assignment expressions
○ Uses arithmetic operators

○ Evaluates to value depending upon

assignment

Arithmetic Operators

● Binary operators

○ Addition +

○ Subtraction –

○ Multiplication *

○ Division /

○ Modulus %

● Unary operators

○ Plus +

○ Minus –

● All operator except % can be

used with operands of any data

types

○ int, float, double, char

● % can be used only with integer

operands

Operator Precedence

In decreasing order of priority

○ Parenthesis ()

○ Unary minus –

○ Multiplication * , Division / and

Modulus %

○ Addition + and Subtraction –

● For same priority evaluation is done

from left to right as they appear

● Parenthesis may be used to

change the precedence of operator

evaluation

Arithmetic Expressions (contd.)

Examples

● 1 + 2 * 3

○ 1 + (2 * 3) ⇒ 7

● 8 / 2 + 2 * 3

○ (8 / 2) + (2 * 3) ⇒ 10

● a - b + c + d

○ (((a - b) + c) + d)

● a * -b + d % e – f

○ a * (-b) + (d % e) - f

Let’s test your understanding …

● a + b + c * d * e ⇒ ?

● 10 / 5 ⇒ ?

● int a = 10, b = 20, c = 30, d ;

float f;

○ d = b/a; d ⇒ ?

○ d = a/b; d ⇒ ?

○ d = c/b; d ⇒ ?

○ f = c/b; f ⇒ ?

Assignment Operator

● l-value = r-value

● l-value must be a variable where you can assign data

● r-value can be any valid for of expression

● The types of both side should usually be the same

● In the other case, r-value gets internally converted to the type of l-value

○ This can cause problems

○ e.g. int a; a = 2 * 3.3; ⇒ a = 6 and not 6.6

Assignment Expression

● Uses the assignment operator =

● General syntax:

○ variable_name = expression

○ l-value = r-value

● The value of the assignment

expression is the value assigned to

the l-value

● Examples:

○ a = 7 ⇒ 7

○ b = 2*7 - 11 ⇒ 3

○ c = x + y * 3 - z ⇒ whatever

value the arithmetic

expression x + y*3 - z

evaluates to; depends on the

value of x, y, z

○ a = a + 5 ⇒ 12

Assignment Expression (contd.)

● Several variables can be

assigned to the same value

using multiple assignment

operators

○ a = b = c = 10

○ x = y = ‘a’

○ … and so on

● Multiple assignment operators

are right-to-left associative

● Each of the assignment

expressions are evaluates to a

value and that value

propagates to the next one

Assignment Operator Variations

● There are shortcuts for simple

assignments

● +=, -=, *=, /=, %=

● a += b ⇒ a = a + b

● a *= 2 ⇒ a = a * 2

● … and so on.

● Let’s test your understanding

…

● int a, b, c;

● Case 1
○ a = b = c = 5

○ a =? b = ? c =?

● Case 2
○ a=3; b= 5;

○ a += b+= 1;

○ a =? b = ?

Two More Variations

● Two unary variations which

increments or decrement the

value of the operand by 1

● Pre-increment operator,

Post-increment operator ++

● Pre-decrement operator,

Post-decrement operator --

○ a++ ⇒ a = a + 1

○ ++a ⇒ a = a + 1

● Both pre and post operators

increment/decrement the

value, but there is an

important difference in the

evaluated value of that

expression

○ a = 3;

○ a++ ⇒ 3

○ ++a ⇒ 4

Logical Expressions

● Uses relational and logical

operators

● This generally specifies a

condition which can be

either true or false

● Relational operators

○ > >=

○ < <=

○ == !=

… compares two quantities

Logical Expressions (contd.)

● Examples

○ x <= y

○ x == y

○ 1 == 2

○ x == y == 1

● (x + y < 6) ⇒ x + y < 6

● Evaluates to either 0 or 1

○ 0 ⇒ false

○ 1 ⇒ true ; also non-zero

values

● Arithmetic expressions are

evaluated first when on either

side of a relational operator

Logical Operators

LOGICAL AND

&&

● 0 && 0 ⇒ 0

● 0 && non-zero ⇒ 0

● non-zero && 0 ⇒ 0

● non-zero && non-

zero ⇒ 1

LOGICAL OR

||

● 0 || 0 ⇒ 0

● 0 || non-zero ⇒ 1

● non-zero || 0 ⇒ 1

● non-zero || non-

zero ⇒ 1

LOGICAL NOT

!

● !0 ⇒ 1

● !non-zero⇒ 0

● aka. unary

negation operator

Logical Expressions (contd.)

Examples

x = 1, y = 3, grades = ‘B’

● (x + y < 6) || (y >= 9) ⇒ 1

● (x == y) && (y != 5) ⇒ 0

● !(grades == ‘A’) ⇒ 1

Let’s test your understanding

● (!10) || (10 + 20 != 200) ⇒ ?

● (!10) && (10 + 20 != 200) ⇒ ?

● (4 > 3) && (100 != 200) ⇒ ?

● (x + y > 6) || (y >= 9) ⇒ ?

● (x = y) && (y == 1) ⇒ ?

● grades == ‘B’ ⇒ ?

● x = 3 && (y = 4) ⇒ ?

Bitwise Operators

● Operators that permits operation on

individual bits

● Useful for low level programming

such as controlling hardware

… we will discuss this operators in more

details later on (if time permits).

● Bitwise AND &

● Bitwise OR |

● 1s complement ~

● Bitwise XOR ^

● Left shift <<

● Right shift >>

A Special Operator: AddressOf (&)

● Remember that each variable is stored at a location with an

unique address

● Putting & before a variable name gives the address of the

variable (where it is stored, not the value)

● Can be put before any variable (with no blank in between)

○ int a = 8;

○ printf (“value of a = %d, address of a=%d”, a, &a);

○ printf (“value of a = %d, address of a=%p”, a, &a);

Another Special Operator: sizeof ()

● It can be used with an

expression as well – then it

returns the size of the final

value

○ int a=2; double b=10.3;

○ sizeof(a+b) ⇒

sizeof(double)

● This is a much used operator

in C

● It is an unary operator

● It is used to compute the

size of its operand in compile

time

● It can used on any data type

○ sizeof (int), sizeof (char),

int a; sizeof (a), etc.

Typecasting

● Remember the problem with division
○ int a = 10, b = 20, c = 30, d ; float f;

○ f = c/b; f ⇒ ?

● The solution is to do the following

○ Convert at least one of the operand to floating point

○ f = c; f ⇒ 30.0

○ f /= b; or f = f/b; f ⇒ 1.50

● The shorthand of doing this is called typecasting

○ f = ((float)c)/b; f ⇒1.50

○ The type of c has not changed but the evaluated value of (float)c is now a float

type

Typecasting (contd.)

● Not everything can be typecast to everything

○ Casting a float to an integer will lose information since int

cannot store the fractional part

○ Similarly int should not be typecast to char

● General rule

○ Make sure the final type can store any value of the initial type

Statements in a C Program

● Parts of C program that tell the computer what to do

● Types of statements

○ Declaration statements – Declares variables etc.

○ Assignment statement – Assignment expression, followed by a ;

○ Control statements – For branching and looping

■ Branching - if-else, switch

■ Looping - for, while, do while

○ Input/Output – Read/print, like printf/scanf

Statements (contd.)

● Compound statements

○ A sequence of statements enclosed within { and }

○ Each statement can be an assignment statement, control

statement, input/output statement, or another compound

statement

○ We will also call it block of statements sometimes

informally

	Slide 1: Introduction to Computing Expressions
	Slide 2: Recap
	Slide 3: Recap (contd.)
	Slide 4: Anatomy of Programming
	Slide 5: Structure of a C Program
	Slide 6: The Customary First C Code
	Slide 7: Things One Might Use in C Programming
	Slide 8: Variables and Constants
	Slide 9: Expressions
	Slide 10: Arithmetic Operators
	Slide 11: Operator Precedence
	Slide 12: Arithmetic Expressions (contd.)
	Slide 13: Assignment Operator
	Slide 14: Assignment Expression
	Slide 15: Assignment Expression (contd.)
	Slide 16: Assignment Operator Variations
	Slide 17: Two More Variations
	Slide 18: Logical Expressions
	Slide 19: Logical Expressions (contd.)
	Slide 20: Logical Operators
	Slide 21: Logical Expressions (contd.)
	Slide 22: Bitwise Operators
	Slide 23: A Special Operator: AddressOf (&)
	Slide 24: Another Special Operator: sizeof ()
	Slide 25: Typecasting
	Slide 26: Typecasting (contd.)
	Slide 27: Statements in a C Program
	Slide 28: Statements (contd.)

