Introduction to Computing

Advanced Things - |

Recall Array

int states[5], i; //declaration

for (I=0; i<5; i++)
states|i]=i;

for (I=0; i<5; i++)
printf("%d, ", states][i]); //access
/l outputs 1, 2, 3, 4, 5,

/I initialization

int a[5]; int *arr;

printf("%d, %d, %d \n", sizeof(int), sizeof(a[3]), sizeof(a));
// outputs 4, 4, 20

printf (“%d”, sizeof (arr));

arr = a;

printf (“%d”, sizeof (arr));

// outputs 8

Il outputs ??

This is also called a one
dimensional array or 1D array

Sometimes we need to work
on multidimensional data, e.g.
2D coordinates, matrix,
system of equations

1D array is not convenient
enough for such problems

2D Array

e intarr[m][n];
o m is the number of rows and n is the number of columns
o Array of m*n integers
o Useful to store multidimensional data

e Accessing element at it row and j*" column using arr[i][j]
e Each arr[i] is an 1D array of size n

2D Array (contd.)

int a[2][3], 1, J:; //declaration
//initialization
for (i=0; i<2; i++)

for (j=0; Jj<3; Jj++)

ali][3] =1 + 37

//access
for (i=0; i<2; i++)

for (3=0; 3<3; j++)

printf("%d, ", alill3jl):

printf ("sd, %d
//outputs 24,

5d",

, sizeof (a),
12, 4

sizeof(al[l]),

sizeof(all]l[2]1)):

3D Array

o Int arr [m][n][p];
o Array of m*n*p integers
e Each arr|i] is an 2D array of size n*p integers
e Each arri][j] is an 1D array of p integers
e Each arr[i][j][K] is a single integer element

—how to calculate the address of any element in the array?

3D Array (contd.)

int a[2][31[4], i, J, k; //declaration

//initialization
for (i=0; 1i<2; 1i++)
for (3=0; j3<3; J++)
for (k=0,; k<4; k++)
ali]l[7]1([k] = (2 + J)*k;

//access
for (i=0; i<2; i++)
for (3=0; j<3; j++)
for (k=0; k<4; k++)
printf("%d, ", alill[j]I[kl);

printf ("$d, %d, %d, %d \n", sizeof (a), sizeof(a[l]), sizeof(a[0][2]), sizeof(a[l][0][2])):
//outputs ??

Memory layout of Arrays: Row-Major and Column-Major

Row-Major: Arrays in C:
= Stores data row by row: All elements of the first row are stored, followed by Arrays are stored in contiguous
all elements of the second row, and so on.
® Address of arr[i][j] = Base Address + ((i * Columns) + j) * sizeof(data_type)
" UsedbyC and C++. o _ _
Column-Major: For multi-dimensional arrays in C:
= Stores data column by column: All elements of the first column are stored, Row-major order is used by default.
followed by all elements of the second column, and so on.
® Address of arr[i][j] = Base Address + ((j * Rows) + i) * sizeof(data_type) Key Terminology:

- Uolloy Sonen ene ke ® Base Address: Address of the first
element.

memory locations.

Why It Matters?

B Affects how multi-dimensional arrays are stored in memory.

® |mpacts performance in terms of cache efficiency and access pattems. ® Index Calculation: Computed
based on the dimensions and row-
major order.

Memory Layout of 2D Arrays

A 2D array arr[R][C] Is stored row int arr[3][4] = {
by row. {1, 2, 3, 4},

_ {5, 6, 7, 8},
Flattened into a 1D representation: {9, 10, 11, 12}

arr[0][@], arr[0][1], ...,
arr[0][C-1], arr[1][O], ...,
arr[R-1][C-1]

};

Flattened in memory as:

Memory Address Calculation: (1,2, 3, 4,5, 6,7, 8,9, 10, 11, 12]

Address of arr[i][j] = Base
Address + ((i * Columns) + j)
* sizeof(data_type)

Memory Layout of 3D Arrays

A 3D array arr[X][Y][Z] is stored as: int arr[2][3][2] = {
e First, all elements of the 1st slice iy 2 118, Ay (9, Gy
(arr[0]1[Y1[Z]), {7, 8} {9, 10}, {11, 12}}
e Then, all elements of the 2nd slice g
(arr[11[Y1[Z])

Flattened in memory as:

e Then 3rd slice, and so on. [1,2,3,4,5,6,7,8,09,10, 11, 12]

Memory Address Calculation:

Address of arr[i][j][k] = Base Address +
((i *Y *2Z2)+ (3 *2Z) + k) *
sizeof(data_type)

Visual Representation of 3D Array Layout

Layers (Slices): i”t{?ff[21[3{][2];{{ .
, 1, 2}, {3, 4}, {5, 6}},
e arr[0][*][*]: Contains {7, 8}, {9, 10}, {11, 12}}
all elements from the first };
slice.

_ Flattened Order:
e arr[1][*][*]: Contains arr{0][0][0], arr[0][0][1], arr{O][L][C], ..., arr[1][2][1]

all elements from the _
Diagram:

second slice. Layer 0 (art0]):
[[1,2],[3,4][5 6]]

Layer 1 (arr[1]):
[[7,8],]9, 10], [11, 12]]

Memory Layout of n-D Arrays

An n-D array arr[D;][D,]...[D,] Memory Address Calculation:

is stored as: Address of arr[1,][1,]...[1,] =
e First, all elements of the Base Address + (((((iy * Dy) +1i;) * D3) + ... +1iy)
innermost dimension for the * sizeof(data_type)
first index of the outer
dimensions.

Flattened Representation:

e Then proceed to the next arr[0][0]...[0], arr[0][0]...[1], ..., arf[D;-1][D,-1]...[D,]
index of the outer
dimensions.

Array of Pointers

It's an array of
pointer variables
Each element in the
array can contain
address of a
variable of the
declared type

So, array of different
sized arrays can be
done

Often used with
strings, functions, or
arrays.

double *buf([3]; // Array of 5 double pointers
double d0 = 8, dl1[2] = {11, 12}, d2 = 10;
buf[0] = &d0; buf[l] = &d1[0]; buf[2] = &d2;

printf ("%$1d, %1d \n", sizeof (double*), sizeof (buf));
//prints 8, 24

printf ("%p, %p, %p, %$1f \n", buf, &buf[0], buf[l],

*buf[l]);
//prints 0x..b200, Ox..b200, Ox..bl1f0, 11.000000

what will be buf[1][1] ?

Pointer to an Array

I's a pointer that can
point to a whole array
Declaration:
data_type (*ptr)[size];
It's has subtle
difference from a
normal array variable

int (*buf) [4]; // just another pointer
Lype

printf ("%1d, %1d, %1d, %1d \n", sizeof (int),
sizeof (buf), sizeof(*buf), sizeof (* (buf+l)));

//prints 4, 8, 16, 16
"$p, %p \n", buf, buf+l);
//prints 0x..7e30, 0x..7e40 — notice
that the jump is 16 bytes

printf (

Accessing Elements using Pointer to an Array

e ptr holds the int arr[5] ={1, 2, 3, 4, 5};

address of arr. int (*ptr)[5] = &arr; // 'ptr' is a pointer to an array
e Using of 5 integers

(*!otr') [index], the /IAccess

pointer accesses printf("%d\n", (*ptr)[2]); // Output: 3

elements of the array.

Differences Between Pointer to Array and Array of Pointers

Feature Pointer to Array Array of Pointers
Definition Points to an entire array. Array where each element is a pointer.
Declaration int (*ptr) [size]; int *arr[size];
Use Case Access a single array. Access multiple variables or objects.

Memory Layout

Single pointer to a contiguous block.

Multiple pointers stored in the array.

Example Access

(*ptr) [index]

*arr[index]

Applications and Practice Problems

ApllE s Practice Problems
Pointer to Array:

® Useful in 2D arrays where @ \\/rite a program that uses a pointer to an array to
you want to pass a row or

2 block of data to a access and modify elements of a 2D array.
function. §
® Examplé: Accessing or c Im_plemen.t a program that stpres and prints 5
manipulating matrix rows. strings using an array of pointers.
Array of Pointers: . :
y. Commonly usedwith e Create a function that accepts a pointer to an
strings (array of char¥*), .
function pointers, and array and calculate§ the sum of all its eleme_nts.
dynamic memory. e Use an array of pointers to create a dynamic
® Example: Storing multiple)
strings or function menu system where each menu option
addresses.

corresponds to a function pointer.

Introduction to Bitwise Operators

e Bitwise operators operate ® Efficient performance for certain tasks (e.g.,
toggling settings, encryption).

directly on binary e Essential for fields like embedded systems, network

representations of data programming, and game development.

e Commonly used for low- Decimal vs. Binary o _ _
level : dat Example: 5 in decimal is 8101 in binary, 7 in decimal
eve_ prog_rammlng, ata is 0111,
manipulation, and Binary Operations
performance-critical e Bit positions from right to left: 270, 271, 2”2, etc.
tasks e Understanding binary helps visualize bitwise

operations.

Bitwise AND Operator (&), Bitwise OR Operator (|)

Syntax: result = a | b;
Description: Performs OR on each
pair of bits in two numbers.
Example:

5 | 3—0101 | @011 — 0111
(Result: 7)

Use Case: Setting specific bits to 1.

Syntax: result = a & b;
Description: Performs AND on each
pair of bits in two numbers.
Example:

5 & 350101 & 0011 — 0001
(Result: 1)

Use Case: Masking specific bits.

Bitwise XOR Operator (*), Bitwise NOT Operator (~)

Syntax: result = a * b;
Description: Performs XOR on each
pair of bits, setting the result bit if bits
differ.

Example:

5 "~ 3—-0101 ® 0011 — 0110
(Result: 6)

Use Case: Toggling bits.

Syntax: result = ~aj;

Description: Flips all bits (Os become
1s and vice versa).

Example:

~5 for an 8-bit integer — 0000 0101
becomes 1111 1010

(Result: -6 in two's complement)

Use Case: Inverting bits for binary
operations, generating complements.

Bitwise Shift Operators (<<, >>)

o Left Shift (<<): Moves bits to the left, adding Os at Use Cases:

the right end. Left shift: Efficient
Example: 5 << 1 — 0101 << 1 — 1010 multiplication by
(Result: 10) powers of 2.

Right shift: Division

e Right Shift (>>): Moves bits to the right. by powers of 2.

Example: 5 >> 1 — 0101 >> 1 — 0010
(Result: 2)

Practical Applications of Bitwise Operators

Checking Power of 2:
(Only powers of 2 have one 1 bit).
(n & (n - 1)) ==

Swapping Two Numbers
(without a third variable):

a =a " b;
b =a " b;
a =a " b;

Setting a Bit at a Position:

n |= (1 << position);
Clearing a Bit at a Position:

n & ~(1 << position);

Masking: Isolating bits in a number using &.
Example: Check if a number is odd using n & 1.

Setting/Clearing Bits: Using | and & with a
mask.

Toggling Bits: Using XOR (*) to switch specific
bits.

Shifts:

Left shifts for multiplying by powers of 2.
Right shifts for quickly dividing by powers of 2.

Bitwise Operator Practice Problems

e \Write a function to check if
a number is even or odd
using bitwise operators.

e \Write a function that
toggles the 3rd bit of a
given integer.

e Create a function to swap
two integers without using
a temporary variable.

e Implement a left rotation of
an integer.

More problems to try:
Count the Number of 1 Bits in an Integer
Problem: Write a function to count how many bits are set to 1 in the binary representation of an
integer.
Hint: Use aloop withn = n & (n - 1); to reduce the number of set bits in each iteration.
Find the Only Non-Duplicate Number in an Array
Problem: Given an array where every element appears twice except for one, find that single
element.
Hint: XOR all elements. Pairs will cancel out, leaving the unique element.
Determine If Bits Are Alternating in a Number
Problem: Write a function to check if a number’s bits altemate between 1 and 0 (e.g.,101010. . .).
Hint: XOR the number with itself shifted one bit, then check if the result is a power of 2.
Flip a Specific Bit
Problem: Write a function to flip a bit at a given position in a number.
Hint: Use XOR with a mask: n ~= (1 << position);
Clear All Bits from MSB through a Given Position
Problem: Write a function to clear all bits from the most significant bit (MSB) down to a specified bit
position.
Hint: Use a mask with ~((1 << (position + 1)) - 1);
Multiply a Number by 3.5 Using Bitwise Operators
Problem: Without using multiplication, create a function that multiplies a number by 3.5.
Hint: n * 3.5 can be represented as (n << 1) + n + (n >> 1);
Swap Even and Odd Bits in an Integer
Problem: Write a function to swap even and odd bits in an integer.
Hint: Mask and shift: ((n & OxAAAAAAAA) >> 1) | ((n & ©x55555555) << 1);

Introduction to Variadic Functions

Variadic Functions Common Use Cases
e Functions that accept a variable ® [ogging, formatting, mathematical functions (e.g.,

sum of multiple values).
number of arguments o .
® Simplifies code where multiple parameters may

vary in count.
e Useful for situations where the

number of arguments isn't fixed
(e.g., printf, fscanf).

Syntax of Variadic Functions

Header: #include<stdarg.h> Defining a Variadic Function:
#include <stdarg.h>
e va list: Atypeto hold void functionName(int fixedArg, ...);
information about variable
arguments. e The ellipsis (. . .) represents additional
e va_start: Initializes a arguments after any fixed parameters.
va_list object with the last e At least one fixed parameter must precede the
known fixed argument. ellipsis to know where variable arguments
® va_arg. Accesses each begin.
argument in the list.
e va_end: Cleans up the Example:

va_list when done. void printNumbers(int count, ...);

Basic Example of Variadic Function

How the Code Works Function to Print Any Number of Integers:
#include <stdarg.h>

. . #include <stdio.h>
® va list: Declares the list to hold

arguments. void printNumbers(int count, ...) {
® va_start(args, count): Initializes Va_llft ?(rgs; ;
3 va_Startiargs, count),
z;egds ,pV:r:]r;gt:?t as the last known for (inti=0;i< cour(1t; i++) {)
. int num = va_arg(args, int);
® va arg(args, type): Retrieves printf("%d ", num);
each argument in the specified
. va_end(args);
type (e'g" lnt)' printf("\n");
® va_end(args): Cleans up after }
usage. _ _
Note: All variable arguments must be Intpﬂﬁltﬁ&rgqbers(s T
accessed in the correct type (e.g., int, printNumbers(s, 1, 2, 3. 4, 5);

double). return O;
}

Understanding Argument Types

Importance of Correct Types

The type of each argument must
be known at compile-time.
Mismatch in expected type can
lead to undefined behavior.

Use the correct type in
va_arg(args, type).

Common Usage Patterns

Functions with similar types across
arguments (e.g., integers, floats).
Handling strings requires checking
for specific delimiters or count
limits.

Practical Use Case: Sum of Numbers
int sum(int count, ...) {

}

va_list args;

va_start(args, count);

int total = 0;

for (inti=0; i< count; i++) {
total += va_arg(args, int);

}

va_end(args);

return total;

int main() {

}

printf("Sum: %d\n", sum(3, 10, 20, 30)); // Output: 60

return O;

Handling Variable Argument Types

Mixed Argument Types void mixedArgs(intn, ...) {
Example: va_list args;
e Pass in a known type order va_start(args, n);
(e.g., alternating int and int i =va_arg(args, int);
double values) double d = va_arg(args, double);
e Use enum or a format string va_end(args);

to specify types, similar to }
printf

Common Pitfalls and Considerations

Practice Problems

Implement a Variadic max Function

Task: Find the maximum value from any
number of integer arguments.

Variadic Logging Function

Task: Create a function
logMessage(level, ...) where levelis
a string (e.g., "INFO", "ERROR") followed by
a format string and corresponding
arguments.

Product Calculator

Task: Write a function multiply(count,

...) that retums the product of count
integers.

Dynamic Formatting

Task: Create a variadic function that formats
and prints a string, handling int, double,
and char*.

Type Safety: C does not verify argument types;
incorrect types can lead to runtime errors.
Performance: Varargs functions are slower due to
extra processing.

Alternatives: If the argument count or type varies
significantly, consider passing an array or struct
instead.

Examples to Avoid:

Incorrect type usage (e.g., va_arg as double for an
int argument).

Excessive argument use without clear structure

Introduction to Standard 1/0O Streams in C

What are Standard I/O Streams?

stdin, stdout, and stderr are
predefined streams in C used
for input and output.

They handle data flow
between the program and its
environment (e.g., terminal,
file).

Why Use Standard 1/0O?

Simplifies input/output
handling.

Provides a consistent interface
for reading/writing data across
different platforms.

Overview of stdin, stdout, and stderr
stdin: Standard input stream.

Default: Keyboard input.

stdout: Standard output stream.

Default: Screen/console output.

stderr: Standard error stream.

Default: Screen output (separate from stdout).

Purpose: Separates normal output and error
messages for easier debugging.

Standard Input (stdin)

Definition: Reads input data int num;
for the program. printf("Enter a number: ");
Common Functions: scanf("%d", &num);
e scanf(): Reads formatted printf("You entered: %d\n", num);
input.
e getchar(): Reads a single
character. Usage Tip: Use fgets() with sscanf() to handle
e fgets(): Reads a string multiple inputs safely.
(more robust than gets()).

Standard Output (stdout)

Definition: Writes normal int num = 10;

output data. printf("The value is %d\n", num);
Common Functions:

e printf(): Prints formatted

output.
e putchar(): Outputs a Redirection: stdout can be redirected to files or
single character. other devices (e.g., > output. txt).

e puts(): Prints a string
followed by a newline.

Standard Error (stderr)

Definition: Writes error
messages or diagnostic
output.

Why Use stderr?

e Keeps error messages
separate from standard
output.

e Error messages aren't
redirected when stdout is
redirected, making
debugging easier.

iIf (error) {
fprintf(stderr, "An error occurred\n");

}

Tip: Use stderr for all critical error messages.

Using fprintf and Redirection with Standard Streams

Syntax: Command Line Redirection

fprintf(stream, "format", args); : _
e Works with any output stream e Redirect stdout: program > output.txt

(stdout, stderr, file pointers). e Redirect stderr: program 2> error.txt
Examples: e Redirect both: program > output.txt 2>
® Normal output: fprintf(stdout,

"This is standard output.\n"); SRR
® Error output: fprintf(stderr,

"This is an error Why Redirect?

message.\n"); e Useful for logging, debugging, and
Benefit: Offers flexibility in specifying separating normal output from errors.

the output stream.

Best Practices with Standard Streams

Example: Redirecting stdout and stderr

#include <stdio.h>

int main() {
fprintf(stdout, "This is standard
output.\n");
fprintf(stderr, "This is an error
message.\n");
return O;

}

Run with Redirection:
./program > output.txt 2> error.txt

Explanation:
stdout goes to output.txt, and stderr goes to
error.txt.

Use stdout for Normal Program Output:
Ensures separation between regular data
and errors.

Use stderr for Errors and Debugging
Information: Keeps error messages visible
even if stdout is redirected.

Redirect Output for Logging and
Analysis: Save outputs to files for later
review or automated testing.

Practice Problems

Write a Program with Conditional
Error Output: Write a program that
asks for a number. Print an error to
stderr if the input is negative.

Implement a Logging System:
Create a function that logs messages
to either stdout or stderr based on
the message type.

Redirection Exercise: Run a program
that outputs both stdout and stderr
messages, and practice redirecting
each to separate files.

More problems to try

Count Words Using stdin and stdout
Task: Write a program that reads lines of text from stdin and counts the number of words. Output
the word count to stdout.
Hint: Use fgets () to read each line and sscanf () or strtok() to count words.

Error Logging Simulation
Task: Create a program that processes a list of numbers, printing each to stdout if it is positive. If a
negative number is encountered, log an error message to stderr and continue.
Hint: Use fprintf(stderr, ...) for logging and skip further processing for negative values.

Redirection Test
Task: Write a program that outputs a series of messages to stdout and stderr. Run the program
from the command line and try redirecting stdout to a file while keeping stderr in the console.
Hint: Use ./program > output.txt and 2> redirection options to separate streams.

Implement a Simple Logger
Task: Write a logging function 1log_message that accepts a log level (INFO, WARNING, ERROR) and a
message. Direct ERROR logs to stderr and all others to stdout.
Hint: Use fprintf(stdout, ...) or fprintf(stderr, ...) based on the log level.

Dual Output Challenge
Task: Write a program that reads integer input from stdin, calculates the square of each integer,
and outputs results to stdout. If a non-integer is entered, print an error to stderr.
Hint: Use scanf () to validate integers and fprintf(stderr, ...) for error reporting.

Introduction to enum in C

What is an enum? Declaration:
A user-defined data type in C used to enum Color { RED, GREEN, BLUE };
assign names to integral constants,
making code more readable. Usage:
enum Color color;
Syntax: color = RED;
enum Day { SUNDAY, MONDAY, if (color == GREEN) {
TUESDAY, WEDNESDAY, THURSDAY, printf("The color is green!\n");
FRIDAY, SATURDAY }; }
Default Values: Accessing Values:
By default, enum values start from 0 and ® Access by name, making the code more

increment by 1 for each subsequent item. descriptive.

Assigning Custom Values in enum

Custom Values:
You can assign specific values to enum
constants.
enum Status { SUCCESS
FAILURE = -1, PENDING

9,
2 };

Example:
enum Status result = FAILURE;
assigns result a value of -1.

Skipping Values:
Values can be skipped, creating gaps
within the enum.

Why typedef with enum?
Simplifies the code by allowing the omission of enum
keyword when declaring variables.

Example:
typedef enum { JAN, FEB, MAR } Month;
Month current_month = JAN;

Benefit:
Creates more readable and reusable code.

enum Usage and Applications

Example: Using enum in Switch Statements
enum Direction { UP, DOWN, LEFT, RIGHT };
enum Direction dir = LEFT,;

switch (dir) {

case UP:
printf("Moving up\n");
break;

case DOWN:
printf("Moving down\n");
break;

case LEFT:
printf("Moving left\n");
break;

case RIGHT:
printf("Moving right\n");
break;

}

Purpose: Enhances readability and maintainability by using
descriptive names instead of numbers.

Using enum as Bit Flags: Assign powers of two to enum
values for bitwise operations.
enum Permissions { READ = 1, WRITE = 2,
EXECUTE = 4 };

Example usage:
int perm = READ | EXECUTE;
if (perm & EXECUTE) {
printf("Execute permission
granted.\n");

}

State Representation: Ideal for representing states in
state machines or status codes.

Best Practices with enum

Name Your enum Values Clearly: FretEilies FelslEe.
Use descriptive names for each Enum Month Example:
constant to improve code readability. Define an enum for months (January to December) with

custom values for each.
Print the numeric representation of a specific month.

Avoid Overlapping Values: Avoid Permissions Bit Flags:

i ithi Create an enum with bit flags for file permissions (READ,
duplicate values within the same SRiTE BRI

enum unless intentional (e'g" as bit Implement a function that checks if a specific
flags). permission is granted.
Error Codes with enum:
.. .. Define an enum for error codes (SUCCESS,
Limit Scope: Use typedef to limit ERROR_NOT_FOUND, ERROR_ACCESS_DENIED).
the scope of enum, so it doesn’t Write a function that returns these codes based on

conflict with other code. different conditions.

Introduction to Unions in C

What is a Union? Syntax and Example of a Union
A data structure in C that allows AU
different variables to share the ﬂgaif
same memory location. char str[20];
}s
Defined with the union keyword. Accessing Union Members:

union Data data;
data.i = 10; // Sets integer

Memory Sharing: Only one data.f = 3.14; // Sets float, overwrites
member can hold a value at any 1nteger
time; all members occupy the Memory Efficiency: Size of a union is the size of its largest

same memaory space. member.

Applications of Unions

Memory Optimization: Difference Between Struct and Union
e Save memory by sharing space

among multiple data types.
e Useful in embedded systems
where memory is limited.

Struct:
® Each member has its own memory.
® Total size is the sum of all members.

Data Interpretation: Access the o
same memory as different types for UMM

byte-level manipulations. ® All members share the same memory space.
® Total size is the size of the largest member.

Variant Data Types: Represent ® Usage: Unions are used when only one of the

multiple types in data communication members will be used at any given time.

protocols.

Usage examples of Unions

Simulating a Tagged Union: Interpreting Data in Different Formats:
enum Type { INT, FLOAT }; union IntFloat {
struct Variant { e A
enum Type type; g
union { float f;
int i; }s
float f; union IntFloat data;
} data; data.i = 1065353216;
¥ printf("Interpreted as float: %f\n",
Usage: data.f); // May output: 1.0
Set type to indicate the active data
type. Usage:
Access based on type to prevent Useful for low-level data interpretation, especially in

misuse. networking and data serialization.

Best Practices with Unions

Use Only One Member at a
Time: Avoid accessing multiple
members simultaneously.

Use enum Tags for Safety: Use
an enum to track the active
member for safer data handling.

Avoid Pointers Inside Unions:
Use fixed-size data types to
avoid memory issues with
pointers.

Practice Problems:

Simple Union with Multiple Data Types: Define a union Data that can store an int, float, and a char[20] string.
Write a program to: Assign a value to each member and printit, noting how values overwrite each other.
Demonstrate the shared memory behavior of union members.

Data Interpretation Union: Create a union Interpret with two members: int num and float fnum.

Assign an integer value to num and print the corresponding value of fnum.
Observe and analyze the behavior. (Hint: This demonstrates interpreting memory as different data types.)

Union for Byte-Level Access: Define a union ByteAccess with: An int and a char[4] array.

Write a program that: Assigns a value to the int. Prints each byte of the integer using the char array.
Application: This can be used to understand system endianness (byte order).

Tagged Union for Multiple Types: Create a struct with: An enum Type (e.g., INT, FLOAT). A union with int and float

members.

Implement a function that: Takes the enum to determine the active union member. Assigns and prints the
corresponding value based on the type.
Hint: This mimics a “tagged union” for handling different types in the same memory location.

Bitwise Manipulation Using Unions: Define a union BitwiseData containing: An unsigned int and a struct with four

unsigned char fields.

Write a program to: Assign a value to the unsigned int. Access and printindividual bytes using the unsigned char
fields.
Objective: Understand how to manipulate individual bytes for bitwise operations.

Union for Embedded System Data Packing: Design a union SensorData to store: Different sensor data types, such as

temperature (float), humidity (int), and status flags (char).

Implement a program that: Uses a union to save memory, only holding one sensor data type at a time.
Application: Thisis useful in embedded systems with limited memory.

What is Endianness?

Definition: Two Main Types:

Endianness refers to the byte order e Big-Endian: Most significant byte is
used to represent multi-byte data types stored at the lowest memory address.
in memory. e Little-Endian: Least significant byte is

stored at the lowest memory address.

e Importance: Determines how data is
interpreted and affects data exchange
between systems.

Understanding Big-Endian and Little-Endian

Big-Endian: Little-Endian:
Bytes are stored from the most Bytes are stored from the least
significant to the least significant. significant to the most significant.
Example: Example:
For ©x12345678: For ©x12345678:
Address: Ox00 ©Ox01 0O0x02 0x03 Address: Ox00 ©0x01 0O0x02 0x03

Value: Ox12 ©0x34 0Ox56 0x78 Value: Ox78 ©Ox56 ©0x34 o0x12

Why Endianness Matters

Data Exchange Between Systems:
Different systems use different byte
orders, so endianness can cause
misinterpretation of data if not handled
properly.

Example: Sending binary data between a

big-endian server and a little-endian client.

Network Protocols:

Protocols like IP standardize on big-
endian (network byte order).

Data often needs to be converted to big-

endian format for network communication.

Example:
Consider a 4-byte integer
int x = 0x12345678;.
® In alittle-endian system:
Stored as [0x78][0x56][0x34][0x12].
® In a big-endian system:
Stored as [0x12][0x34][0x56][0x78].

Endianness and Structs:

When working with structs and unions in C,
remember that individual fields might be accessed
differently due to the system’s endianness.

Practical Applications of Endianness

Data Serialization:
Convert data to a standard byte order
before saving or sending it across
networks.
Networking:
® Convertto network byte order (big-
endian) for compatibility.
® Functionsin <arpa/inet.h> (e.g.,
htonl, ntohl) are used to handle this
conversion.
Binary File Handling:
Read and write binary files considering
endianness to ensure consistency across
platforms.

Practice Problems on Endianness

Endianness Detection:
Modify the detection code to store the result in a
variable, then use it to decide data serialization.

Byte-Swap Function:
Write a function that swaps bytes in an integer
(e.g., ©x12345678 t0 ©x78563412).
Hint: Use bitwise operators.

Network Byte Order Conversion:
Use functions like htonl and ntohl to convert a
uint32_t to network byte order and back, then
print the result.

Memory Layout:
Given a float variable, use a union with a
char[4] to print each byte individually on both
big- and little-endian systems.

Introduction to Function Pointers

What Are Function Pointers? Why Use Function Pointers?

e Function pointers are pointers e Useful in callback functions, sorting,
that point to the address of a event-driven programming, and
function in memory. implementing state machines.

e They allow functions to be e Improve modularity by allowing you
passed as arguments, stored in to switch between different functions
arrays, and returned from other at runtime.
functions.

e Enable dynamic function calls,
which can make code more
flexible and modular.

Declaring Function Pointers

Syntax:
return_type (*pointer_name)(parameter_type(s) list);

Example:
int (*func_ptr)(int, int);
// Pointer to a function taking two int arguments and returning int

Assigning a Function to a Pointer: Calling a Function via a Pointer:
int my_function(int a, int b)

{ return 0;}
(*func_ptr)(argl, arg2);

e DiEr = iy felveitens /TEEliien L // Call using the function pointer
// assigning a value to the variable .
. o // also works without *
//You can omit the '&' as shown below
func_ptr(argl, arg2);

func_ptr = my_function; //same effect as fashion 1

Using Function Pointers in Code

Explanation: #include <stdio.h>

operation can point to int add(int a, int b) { return a + b; }

either add or subtract and 'Ntsubtrac(inta, intb){ returna - b; }

execute different functions int main() {

at runtime int (*operation)(int, int); // Function pointer declaration

operation = add;
printf("Add: %d\n", operation(5, 3)); // Output: 8

operation = subtract;
printf("Subtract: %d\n", operation(5, 3)); // Output: 2

return O;

Function Pointers as Function Parameters

Explanation: #include <stdio.h>
execute can take any

function that matches the
(int, int) signature. }

void execute(int (*operation)(int, int), int x, inty) {
printf("Result: %d\n", operation(x, y));

int multiply(int a, int b) { return a * b; }

int main() {
// Pass 'multiply' as a callback function
execute(multiply, 4, 5);
return O;

}

Function Pointer Arrays

Using Arrays of Function Pointers: #include <stdio.h>

e Enables selecting different functions intadd(inta, int b) { return a + b; }
int subtract(int a, int b) { return a - b; }

at runtime USing an index. int multiply(int a, int b) { return a * b; }
e Common in implementing S|mple_ intmain() {
menu systems or state-based logic. int (*operations[])(int, int) = {add, subtract, multiply};

for (inti=0;i<3;i++){
printf("Result: %d\n", operations[i](6, 2));
}
Explanation: operations is an array of

function pointers, allowing access to }
different functions using an index.

return O;

Applications of Function Pointers

Callback Functions:
Often used in libraries or APIs to perform
custom actions when an event occurs.
E.g., a sorting function might take a custom
comparison function.

Event-Driven Programming:
Allows functions to be registered for specific
events (e.g., GUI programming, signal
handling).

State Machines:
Enables switching between different states in
embedded systems, games, etc.

Custom Sorting:
Function pointers allow sorting based on
different criteria by passing in custom
comparator functions.

Practice Problems with Function Pointers

Custom Calculator:
Implement a calculator using function pointers,
allowing the user to choose operations (add,
subtract, multiply, divide) at runtime.
Callback Sorting:
Write a sorting function that takes a function
pointer as a comparator to sort an array of
integers in ascending or descending order.
Menu System:
Create a simple menu-based program where
each menu option corresponds to a function
pointer. Implement options such as "print,"
“calculate,” and "exit."

	Slide 1: Introduction to Computing Advanced Things - I
	Slide 2: Recall Array
	Slide 3: 2D Array
	Slide 4: 2D Array (contd.)
	Slide 5: 3D Array
	Slide 6: 3D Array (contd.)
	Slide 7: Memory layout of Arrays: Row-Major and Column-Major
	Slide 8: Memory Layout of 2D Arrays
	Slide 9: Memory Layout of 3D Arrays
	Slide 10: Visual Representation of 3D Array Layout
	Slide 11: Memory Layout of n-D Arrays
	Slide 12: Array of Pointers
	Slide 13: Pointer to an Array
	Slide 14: Accessing Elements using Pointer to an Array
	Slide 15: Differences Between Pointer to Array and Array of Pointers
	Slide 16: Applications and Practice Problems
	Slide 17: Introduction to Bitwise Operators
	Slide 18: Bitwise AND Operator (&), Bitwise OR Operator (|)
	Slide 19: Bitwise XOR Operator (^), Bitwise NOT Operator (~)
	Slide 20: Bitwise Shift Operators (<<, >>)
	Slide 21: Practical Applications of Bitwise Operators
	Slide 22: Bitwise Operator Practice Problems
	Slide 23: Introduction to Variadic Functions
	Slide 24: Syntax of Variadic Functions
	Slide 25: Basic Example of Variadic Function
	Slide 26: Understanding Argument Types
	Slide 27: Handling Variable Argument Types
	Slide 28: Common Pitfalls and Considerations
	Slide 29: Introduction to Standard I/O Streams in C
	Slide 30: Standard Input (stdin)
	Slide 31: Standard Output (stdout)
	Slide 32: Standard Error (stderr)
	Slide 33: Using fprintf and Redirection with Standard Streams
	Slide 34: Best Practices with Standard Streams
	Slide 35: Practice Problems
	Slide 36: Introduction to enum in C
	Slide 37: Assigning Custom Values in enum
	Slide 38: enum Usage and Applications
	Slide 39: Best Practices with enum
	Slide 40: Introduction to Unions in C
	Slide 41: Applications of Unions
	Slide 42: Usage examples of Unions
	Slide 43: Best Practices with Unions
	Slide 44: What is Endianness?
	Slide 45: Understanding Big-Endian and Little-Endian
	Slide 46: Why Endianness Matters
	Slide 47: Practical Applications of Endianness
	Slide 48: Introduction to Function Pointers
	Slide 49: Declaring Function Pointers
	Slide 50: Using Function Pointers in Code
	Slide 51: Function Pointers as Function Parameters
	Slide 52: Function Pointer Arrays
	Slide 53: Applications of Function Pointers

