
Introduction to Computing
Advanced Things - I

Recall Array

int states[5], i; //declaration

for (i=0; i<5; i++)

states[i]=i; // initialization

for (i=0; i<5; i++)

printf("%d, ", states[i]); //access

// outputs 1, 2, 3, 4, 5,

● This is also called a one

dimensional array or 1D array

● Sometimes we need to work

on multidimensional data, e.g.

2D coordinates, matrix,

system of equations

● 1D array is not convenient

enough for such problems

int a[5]; int *arr;

printf("%d, %d, %d \n", sizeof(int), sizeof(a[3]), sizeof(a));

// outputs 4, 4, 20

printf (“%d”, sizeof (arr)); // outputs 8

arr = a;

printf (“%d”, sizeof (arr)); // outputs ??

2D Array

● int arr[m][n];
○ m is the number of rows and n is the number of columns

○ Array of m*n integers

○ Useful to store multidimensional data

● Accessing element at ith row and jth column using arr[i][j]

● Each arr[i] is an 1D array of size n

2D Array (contd.)

int a[2][3], i, j; //declaration

//initialization

for (i=0; i<2; i++)

for (j=0; j<3; j++)

a[i][j] = i + j;

//access

for (i=0; i<2; i++)

for (j=0; j<3; j++)

printf("%d, ", a[i][j]);

printf("%d, %d, %d", sizeof(a), sizeof(a[1]), sizeof(a[1][2]));

//outputs 24, 12, 4

3D Array

● int arr [m][n][p];
○ Array of m*n*p integers

● Each arr[i] is an 2D array of size n*p integers

● Each arr[i][j] is an 1D array of p integers

● Each arr[i][j][k] is a single integer element

→how to calculate the address of any element in the array?

3D Array (contd.)

int a[2][3][4], i, j, k; //declaration

//initialization

for (i=0; i<2; i++)

for (j=0; j<3; j++)

for (k=0; k<4; k++)

a[i][j][k] = (i + j)*k;

//access

for (i=0; i<2; i++)

for (j=0; j<3; j++)

for (k=0; k<4; k++)

printf("%d, ", a[i][j][k]);

printf("%d, %d, %d, %d \n", sizeof(a), sizeof(a[1]), sizeof(a[0][2]), sizeof(a[1][0][2]));

//outputs ??

Memory layout of Arrays: Row-Major and Column-Major

Row-Major:

▪ Stores data row by row: All elements of the first row are stored, followed by

all elements of the second row, and so on.

▪ Address of arr[i][j] = Base Address + ((i * Columns) + j) * sizeof(data_type)

▪ Used by C and C++.

Column-Major:

▪ Stores data column by column: All elements of the first column are stored,

followed by all elements of the second column, and so on.

▪ Address of arr[i][j] = Base Address + ((j * Rows) + i) * sizeof(data_type)

▪ Used by Fortran and MATLAB.

Why It Matters?

▪ Affects how multi-dimensional arrays are stored in memory.

▪ Impacts performance in terms of cache efficiency and access patterns.

Arrays in C:

Arrays are stored in contiguous

memory locations.

For multi-dimensional arrays in C:

Row-major order is used by default.

Key Terminology:

● Base Address: Address of the first

element.

● Index Calculation: Computed

based on the dimensions and row-

major order.

Memory Layout of 2D Arrays

A 2D array arr[R][C] is stored row

by row.

Flattened into a 1D representation:
arr[0][0], arr[0][1], ...,
arr[0][C-1], arr[1][0], ...,
arr[R-1][C-1]

Memory Address Calculation:
Address of arr[i][j] = Base
Address + ((i * Columns) + j)
* sizeof(data_type)

int arr[3][4] = {

{1, 2, 3, 4},

{5, 6, 7, 8},

{9, 10, 11, 12}

};

Flattened in memory as:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Memory Layout of 3D Arrays

A 3D array arr[X][Y][Z] is stored as:

● First, all elements of the 1st slice

(arr[0][Y][Z]),

● Then, all elements of the 2nd slice

(arr[1][Y][Z])

● Then 3rd slice, and so on.

Memory Address Calculation:
Address of arr[i][j][k] = Base Address +

((i * Y * Z) + (j * Z) + k) *

sizeof(data_type)

int arr[2][3][2] = {

{{1, 2}, {3, 4}, {5, 6}},

{{7, 8}, {9, 10}, {11, 12}}

};

Flattened in memory as:

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

Visual Representation of 3D Array Layout

Layers (Slices):

● arr[0][*][*]: Contains

all elements from the first

slice.

● arr[1][*][*]: Contains

all elements from the

second slice.

int arr[2][3][2] = {

{{1, 2}, {3, 4}, {5, 6}},

{{7, 8}, {9, 10}, {11, 12}}

};

Flattened Order:

arr[0][0][0], arr[0][0][1], arr[0][1][0], ..., arr[1][2][1]

Diagram:

Layer 0 (arr[0]):

[[1, 2], [3, 4], [5, 6]]

Layer 1 (arr[1]):

[[7, 8], [9, 10], [11, 12]]

Memory Layout of n-D Arrays

An n-D array arr[D1][D2]...[Dn]

is stored as:

● First, all elements of the

innermost dimension for the

first index of the outer

dimensions.

● Then proceed to the next

index of the outer

dimensions.

Memory Address Calculation:

Address of arr[i1][i2]...[in] =

Base Address + (((((i1 * D2) + i2) * D3) + ... + in)

* sizeof(data_type)

Flattened Representation:

arr[0][0]...[0], arr[0][0]...[1], ..., arr[D1-1][D2-1]...[Dn-1]

Array of Pointers

● It’s an array of

pointer variables

● Each element in the

array can contain

address of a

variable of the

declared type

● So, array of different

sized arrays can be

done

● Often used with

strings, functions, or

arrays.

double *buf[3]; // Array of 5 double pointers

double d0 = 8, d1[2] = {11, 12}, d2 = 10;

buf[0] = &d0; buf[1] = &d1[0]; buf[2] = &d2;

printf("%ld, %ld \n", sizeof(double*), sizeof(buf));

//prints 8, 24

printf("%p, %p, %p, %lf \n", buf, &buf[0], buf[1],

*buf[1]);

//prints 0x..b200, 0x..b200, 0x..b1f0, 11.000000

.. what will be buf[1][1] ?

Pointer to an Array

● It’s a pointer that can

point to a whole array

● Declaration:

data_type (*ptr)[size];

● It’s has subtle

difference from a

normal array variable

int(*buf)[4]; // just another pointer

type

printf("%ld, %ld, %ld, %ld \n", sizeof(int),

sizeof(buf), sizeof(*buf), sizeof(*(buf+1)));

//prints 4, 8, 16, 16

printf("%p, %p \n", buf, buf+1);

//prints 0x..7e30, 0x..7e40 ← notice

that the jump is 16 bytes

Accessing Elements using Pointer to an Array

● ptr holds the

address of arr.

● Using

(*ptr)[index], the

pointer accesses

elements of the array.

int arr[5] = {1, 2, 3, 4, 5};

int (*ptr)[5] = &arr; // 'ptr' is a pointer to an array

of 5 integers

//Access

printf("%d\n", (*ptr)[2]); // Output: 3

Differences Between Pointer to Array and Array of Pointers

Feature Pointer to Array Array of Pointers

Definition Points to an entire array. Array where each element is a pointer.

Declaration int (*ptr)[size]; int *arr[size];

Use Case Access a single array. Access multiple variables or objects.

Memory Layout Single pointer to a contiguous block. Multiple pointers stored in the array.

Example Access (*ptr)[index] *arr[index]

Applications and Practice Problems

Applications

Pointer to Array:
● Useful in 2D arrays where

you want to pass a row or

a block of data to a

function.
● Example: Accessing or

manipulating matrix rows.

Array of Pointers:

● Commonly used with
strings (array of char*),

function pointers, and

dynamic memory.

● Example: Storing multiple
strings or function

addresses.

Practice Problems

● Write a program that uses a pointer to an array to

access and modify elements of a 2D array.

● Implement a program that stores and prints 5

strings using an array of pointers.

● Create a function that accepts a pointer to an

array and calculates the sum of all its elements.

● Use an array of pointers to create a dynamic

menu system where each menu option

corresponds to a function pointer.

Introduction to Bitwise Operators

● Bitwise operators operate

directly on binary

representations of data

● Commonly used for low-

level programming, data

manipulation, and

performance-critical

tasks.

● Efficient performance for certain tasks (e.g.,
toggling settings, encryption).

● Essential for fields like embedded systems, network
programming, and game development.

Decimal vs. Binary
Example: 5 in decimal is 0101 in binary, 7 in decimal
is 0111.
Binary Operations
● Bit positions from right to left: 2^0, 2^1, 2^2, etc.
● Understanding binary helps visualize bitwise

operations.

Bitwise AND Operator (&), Bitwise OR Operator (|)

Syntax: result = a | b;

Description: Performs OR on each

pair of bits in two numbers.

Example:

5 | 3 → 0101 | 0011 → 0111

(Result: 7)

Use Case: Setting specific bits to 1.

Syntax: result = a & b;

Description: Performs AND on each

pair of bits in two numbers.

Example:

5 & 3 → 0101 & 0011 → 0001

(Result: 1)

Use Case: Masking specific bits.

Bitwise XOR Operator (^), Bitwise NOT Operator (~)

Syntax: result = a ^ b;

Description: Performs XOR on each

pair of bits, setting the result bit if bits

differ.

Example:

5 ^ 3 → 0101 ^ 0011 → 0110

(Result: 6)

Use Case: Toggling bits.

Syntax: result = ~a;

Description: Flips all bits (0s become

1s and vice versa).

Example:

~5 for an 8-bit integer → 0000 0101

becomes 1111 1010

(Result: -6 in two's complement)

Use Case: Inverting bits for binary

operations, generating complements.

Bitwise Shift Operators (<<, >>)

● Left Shift (<<): Moves bits to the left, adding 0s at

the right end.

Example: 5 << 1 → 0101 << 1 → 1010

(Result: 10)

● Right Shift (>>): Moves bits to the right.

Example: 5 >> 1 → 0101 >> 1 → 0010

(Result: 2)

Use Cases:
Left shift: Efficient

multiplication by

powers of 2.

Right shift: Division

by powers of 2.

Practical Applications of Bitwise Operators

Checking Power of 2:
(Only powers of 2 have one 1 bit).
(n & (n - 1)) == 0

Swapping Two Numbers
(without a third variable):

a = a ^ b;
b = a ^ b;
a = a ^ b;

Setting a Bit at a Position:
n |= (1 << position);

Clearing a Bit at a Position:
n &= ~(1 << position);

Masking: Isolating bits in a number using &.
Example: Check if a number is odd using n & 1.

Setting/Clearing Bits: Using | and & with a

mask.

Toggling Bits: Using XOR (^) to switch specific

bits.

Shifts:
Left shifts for multiplying by powers of 2.

Right shifts for quickly dividing by powers of 2.

Bitwise Operator Practice Problems

● Write a function to check if

a number is even or odd

using bitwise operators.

● Write a function that

toggles the 3rd bit of a

given integer.

● Create a function to swap

two integers without using

a temporary variable.

● Implement a left rotation of

an integer.

More problems to try:
Count the Number of 1 Bits in an Integer

Problem: Write a function to count how many bits are set to 1 in the binary representation of an
integer.
Hint: Use a loop with n = n & (n - 1); to reduce the number of set bits in each iteration.

Find the Only Non-Duplicate Number in an Array
Problem: Given an array where every element appears twice except for one, find that single
element.
Hint: XOR all elements. Pairs will cancel out, leaving the unique element.

Determine If Bits Are Alternating in a Number
Problem: Write a function to check if a number’s bits alternate between 1 and 0 (e.g., 101010...).

Hint: XOR the number with itself shifted one bit, then check if the result is a power of 2.

Flip a Specific Bit
Problem: Write a function to flip a bit at a given position in a number.
Hint: Use XOR with a mask: n ^= (1 << position);

Clear All Bits from MSB through a Given Position
Problem: Write a function to clear all bits from the most significant bit (MSB) down to a specified bit
position.
Hint: Use a mask with ~((1 << (position + 1)) - 1);

Multiply a Number by 3.5 Using Bitwise Operators
Problem: Without using multiplication, create a function that multiplies a number by 3.5.
Hint: n * 3.5 can be represented as (n << 1) + n + (n >> 1);

Swap Even and Odd Bits in an Integer
Problem: Write a function to swap even and odd bits in an integer.
Hint: Mask and shift: ((n & 0xAAAAAAAA) >> 1) | ((n & 0x55555555) << 1);

Introduction to Variadic Functions

Variadic Functions

● Functions that accept a variable

number of arguments

● Useful for situations where the

number of arguments isn't fixed

(e.g., printf, fscanf).

Common Use Cases

● Logging, formatting, mathematical functions (e.g.,

sum of multiple values).

● Simplifies code where multiple parameters may

vary in count.

Syntax of Variadic Functions

Header: #include<stdarg.h>

● va_list: A type to hold
information about variable
arguments.

● va_start: Initializes a
va_list object with the last

known fixed argument.
● va_arg: Accesses each

argument in the list.
● va_end: Cleans up the

va_list when done.

Defining a Variadic Function:
#include <stdarg.h>
void functionName(int fixedArg, ...);

● The ellipsis (...) represents additional
arguments after any fixed parameters.

● At least one fixed parameter must precede the
ellipsis to know where variable arguments
begin.

Example:
void printNumbers(int count, ...);

Basic Example of Variadic Function

How the Code Works

● va_list: Declares the list to hold
arguments.

● va_start(args, count): Initializes
args, with count as the last known
fixed parameter.

● va_arg(args, type): Retrieves
each argument in the specified
type (e.g., int).

● va_end(args): Cleans up after
usage.

Note: All variable arguments must be
accessed in the correct type (e.g., int,
double).

Function to Print Any Number of Integers:
#include <stdarg.h>
#include <stdio.h>

void printNumbers(int count, ...) {
va_list args;
va_start(args, count);
for (int i = 0; i < count; i++) {

int num = va_arg(args, int);
printf("%d ", num);

}
va_end(args);
printf("\n");

}

int main() {
printNumbers(3, 10, 20, 30);
printNumbers(5, 1, 2, 3, 4, 5);
return 0;

}

Understanding Argument Types

Importance of Correct Types
● The type of each argument must

be known at compile-time.
● Mismatch in expected type can

lead to undefined behavior.
● Use the correct type in

va_arg(args, type).

Common Usage Patterns
● Functions with similar types across

arguments (e.g., integers, floats).
● Handling strings requires checking

for specific delimiters or count
limits.

Practical Use Case: Sum of Numbers

int sum(int count, ...) {
va_list args;

va_start(args, count);

int total = 0;

for (int i = 0; i < count; i++) {
total += va_arg(args, int);

}

va_end(args);

return total;
}

int main() {

printf("Sum: %d\n", sum(3, 10, 20, 30)); // Output: 60
return 0;

}

Handling Variable Argument Types

Mixed Argument Types

Example:

● Pass in a known type order

(e.g., alternating int and

double values)

● Use enum or a format string

to specify types, similar to

printf

void mixedArgs(int n, ...) {

va_list args;

va_start(args, n);

int i = va_arg(args, int);

double d = va_arg(args, double);

va_end(args);

}

Common Pitfalls and Considerations

Practice Problems

● Implement a Variadic max Function

Task: Find the maximum value from any
number of integer arguments.

● Variadic Logging Function
Task: Create a function
logMessage(level, ...) where level is
a string (e.g., "INFO", "ERROR") followed by
a format string and corresponding
arguments.

● Product Calculator
Task: Write a function multiply(count,
...) that returns the product of count
integers.

● Dynamic Formatting
Task: Create a variadic function that formats
and prints a string, handling int, double,
and char*.

Type Safety: C does not verify argument types;
incorrect types can lead to runtime errors.
Performance: Varargs functions are slower due to
extra processing.
Alternatives: If the argument count or type varies
significantly, consider passing an array or struct
instead.

Examples to Avoid:
Incorrect type usage (e.g., va_arg as double for an
int argument).
Excessive argument use without clear structure

Introduction to Standard I/O Streams in C

What are Standard I/O Streams?
● stdin, stdout, and stderr are

predefined streams in C used
for input and output.

● They handle data flow
between the program and its
environment (e.g., terminal,
file).

Why Use Standard I/O?
● Simplifies input/output

handling.
● Provides a consistent interface

for reading/writing data across
different platforms.

Overview of stdin, stdout, and stderr

stdin: Standard input stream.

Default: Keyboard input.

stdout: Standard output stream.

Default: Screen/console output.

stderr: Standard error stream.

Default: Screen output (separate from stdout).

Purpose: Separates normal output and error

messages for easier debugging.

Standard Input (stdin)

Definition: Reads input data

for the program.

Common Functions:

● scanf(): Reads formatted

input.

● getchar(): Reads a single

character.

● fgets(): Reads a string

(more robust than gets()).

int num;

printf("Enter a number: ");

scanf("%d", &num);

printf("You entered: %d\n", num);

Usage Tip: Use fgets() with sscanf() to handle

multiple inputs safely.

Standard Output (stdout)

Definition: Writes normal

output data.

Common Functions:

● printf(): Prints formatted

output.

● putchar(): Outputs a

single character.

● puts(): Prints a string

followed by a newline.

int num = 10;

printf("The value is %d\n", num);

Redirection: stdout can be redirected to files or

other devices (e.g., > output.txt).

Standard Error (stderr)

Definition: Writes error

messages or diagnostic

output.

Why Use stderr?

● Keeps error messages

separate from standard

output.

● Error messages aren’t

redirected when stdout is

redirected, making

debugging easier.

if (error) {

fprintf(stderr, "An error occurred!\n");

}

Tip: Use stderr for all critical error messages.

Using fprintf and Redirection with Standard Streams

Syntax:

fprintf(stream, "format", args);
● Works with any output stream

(stdout, stderr, file pointers).

Examples:

● Normal output: fprintf(stdout,
"This is standard output.\n");

● Error output: fprintf(stderr,

"This is an error
message.\n");

Benefit: Offers flexibility in specifying

the output stream.

Command Line Redirection

● Redirect stdout: program > output.txt

● Redirect stderr: program 2> error.txt

● Redirect both: program > output.txt 2>

error.txt

Why Redirect?

● Useful for logging, debugging, and

separating normal output from errors.

Best Practices with Standard Streams

Example: Redirecting stdout and stderr
#include <stdio.h>

int main() {
fprintf(stdout, "This is standard

output.\n");
fprintf(stderr, "This is an error

message.\n");
return 0;

}

Run with Redirection:
./program > output.txt 2> error.txt

Explanation:
stdout goes to output.txt, and stderr goes to
error.txt.

Use stdout for Normal Program Output:

Ensures separation between regular data

and errors.

Use stderr for Errors and Debugging

Information: Keeps error messages visible

even if stdout is redirected.

Redirect Output for Logging and

Analysis: Save outputs to files for later

review or automated testing.

Practice Problems

Write a Program with Conditional
Error Output: Write a program that
asks for a number. Print an error to
stderr if the input is negative.

Implement a Logging System:
Create a function that logs messages
to either stdout or stderr based on
the message type.

Redirection Exercise: Run a program
that outputs both stdout and stderr
messages, and practice redirecting
each to separate files.

More problems to try

Count Words Using stdin and stdout
Task: Write a program that reads lines of text from stdin and counts the number of words. Output
the word count to stdout.
Hint: Use fgets() to read each line and sscanf() or strtok() to count words.

Error Logging Simulation
Task: Create a program that processes a list of numbers, printing each to stdout if it is positive. If a
negative number is encountered, log an error message to stderr and continue.
Hint: Use fprintf(stderr, ...) for logging and skip further processing for negative values.

Redirection Test
Task: Write a program that outputs a series of messages to stdout and stderr. Run the program

from the command line and try redirecting stdout to a file while keeping stderr in the console.
Hint: Use ./program > output.txt and 2> redirection options to separate streams.

Implement a Simple Logger
Task: Write a logging function log_message that accepts a log level (INFO, WARNING, ERROR) and a
message. Direct ERROR logs to stderr and all others to stdout.
Hint: Use fprintf(stdout, ...) or fprintf(stderr, ...) based on the log level.

Dual Output Challenge
Task: Write a program that reads integer input from stdin, calculates the square of each integer,
and outputs results to stdout. If a non-integer is entered, print an error to stderr.
Hint: Use scanf() to validate integers and fprintf(stderr, ...) for error reporting.

Introduction to enum in C

What is an enum?

A user-defined data type in C used to

assign names to integral constants,

making code more readable.

Syntax:

enum Day { SUNDAY, MONDAY,
TUESDAY, WEDNESDAY, THURSDAY,

FRIDAY, SATURDAY };

Default Values:

By default, enum values start from 0 and

increment by 1 for each subsequent item.

Declaration:

enum Color { RED, GREEN, BLUE };

Usage:

enum Color color;

color = RED;
if (color == GREEN) {

printf("The color is green!\n");

}

Accessing Values:

● Access by name, making the code more

descriptive.

Assigning Custom Values in enum

Custom Values:

You can assign specific values to enum
constants.

enum Status { SUCCESS = 0,
FAILURE = -1, PENDING = 2 };

Example:

enum Status result = FAILURE;

assigns result a value of -1.

Skipping Values:

Values can be skipped, creating gaps

within the enum.

Why typedef with enum?

Simplifies the code by allowing the omission of enum

keyword when declaring variables.

Example:

typedef enum { JAN, FEB, MAR } Month;

Month current_month = JAN;

Benefit:

Creates more readable and reusable code.

enum Usage and Applications

Example: Using enum in Switch Statements
enum Direction { UP, DOWN, LEFT, RIGHT };

enum Direction dir = LEFT;

switch (dir) {
case UP:

printf("Moving up\n");

break;
case DOWN:

printf("Moving down\n");
break;

case LEFT:

printf("Moving left\n");
break;

case RIGHT:
printf("Moving right\n");
break;

}

Purpose: Enhances readability and maintainability by using
descriptive names instead of numbers.

Using enum as Bit Flags: Assign powers of two to enum
values for bitwise operations.

enum Permissions { READ = 1, WRITE = 2,
EXECUTE = 4 };

Example usage:

int perm = READ | EXECUTE;
if (perm & EXECUTE) {

printf("Execute permission
granted.\n");

}

State Representation: Ideal for representing states in

state machines or status codes.

Best Practices with enum

Name Your enum Values Clearly:

Use descriptive names for each
constant to improve code readability.

Avoid Overlapping Values: Avoid
duplicate values within the same
enum unless intentional (e.g., as bit

flags).

Limit Scope: Use typedef to limit
the scope of enum, so it doesn’t
conflict with other code.

Practice Problems:

Enum Month Example:

Define an enum for months (January to December) with

custom values for each.
Print the numeric representation of a specific month.

Permissions Bit Flags:

Create an enum with bit flags for file permissions (READ,
WRITE, EXECUTE).

Implement a function that checks if a specific

permission is granted.
Error Codes with enum:

Define an enum for error codes (SUCCESS,

ERROR_NOT_FOUND, ERROR_ACCESS_DENIED).

Write a function that returns these codes based on

different conditions.

Introduction to Unions in C

What is a Union?

A data structure in C that allows

different variables to share the

same memory location.

Defined with the union keyword.

Memory Sharing: Only one

member can hold a value at any

time; all members occupy the

same memory space.

Syntax and Example of a Union
Union Declaration:

union Data {
int i;
float f;
char str[20];

};

Accessing Union Members:
union Data data;
data.i = 10; // Sets integer
data.f = 3.14; // Sets float, overwrites
integer

Memory Efficiency: Size of a union is the size of its largest

member.

Applications of Unions

Memory Optimization:
● Save memory by sharing space

among multiple data types.
● Useful in embedded systems

where memory is limited.

Data Interpretation: Access the
same memory as different types for
byte-level manipulations.

Variant Data Types: Represent
multiple types in data communication
protocols.

Difference Between Struct and Union

Struct:

● Each member has its own memory.

● Total size is the sum of all members.

Union:

● All members share the same memory space.

● Total size is the size of the largest member.

● Usage: Unions are used when only one of the

members will be used at any given time.

Usage examples of Unions

Simulating a Tagged Union:
enum Type { INT, FLOAT };
struct Variant {

enum Type type;
union {

int i;
float f;

} data;
};

Usage:
Set type to indicate the active data
type.
Access based on type to prevent
misuse.

Interpreting Data in Different Formats:

union IntFloat {

int i;

float f;
};

union IntFloat data;
data.i = 1065353216;

printf("Interpreted as float: %f\n",

data.f); // May output: 1.0

Usage:

Useful for low-level data interpretation, especially in

networking and data serialization.

Best Practices with Unions

Use Only One Member at a

Time: Avoid accessing multiple

members simultaneously.

Use enum Tags for Safety: Use

an enum to track the active

member for safer data handling.

Avoid Pointers Inside Unions:

Use fixed-size data types to

avoid memory issues with

pointers.

Practice Problems:

Simple Union with Multiple Data Types: Define a union Data that can store an int, float, and a char[20] string.

Write a program to: Assign a value to each member and print it, noting how values overwrite each other.

Demonstrate the shared memory behavior of union members.

Data Interpretation Union: Create a union Interpret with two members: int num and float fnum.

Assign an integer value to num and print the corresponding value of fnum.

Observe and analyze the behavior. (Hint: This demonstrates interpreting memory as different data types.)

Union for Byte-Level Access: Define a union ByteAccess with: An int and a char[4] array.

Write a program that: Assigns a value to the int. Prints each byte of the integer using the char array.

Application: This can be used to understand system endianness (byte order).

Tagged Union for Multiple Types: Create a struct with: An enum Type (e.g., INT, FLOAT). A union with int and float

members.

Implement a function that: Takes the enum to determine the active union member. Assigns and prints the

corresponding value based on the type.

Hint: This mimics a “tagged union” for handling different types in the same memory location.

Bitwise Manipulation Using Unions: Define a union BitwiseData containing: An unsigned int and a struct with four

unsigned char fields.

Write a program to: Assign a value to the unsigned int. Access and print individual bytes using the unsigned char

fields.

Objective: Understand how to manipulate individual bytes for bitwise operations.

Union for Embedded System Data Packing: Design a union SensorData to store: Different sensor data types, such as

temperature (float), humidity (int), and status flags (char).

Implement a program that: Uses a union to save memory, only holding one sensor data type at a time.

Application: This is useful in embedded systems with limited memory.

What is Endianness?

Definition:

Endianness refers to the byte order

used to represent multi-byte data types

in memory.

Two Main Types:

● Big-Endian: Most significant byte is

stored at the lowest memory address.

● Little-Endian: Least significant byte is

stored at the lowest memory address.

● Importance: Determines how data is

interpreted and affects data exchange

between systems.

Understanding Big-Endian and Little-Endian

Big-Endian:

Bytes are stored from the most

significant to the least significant.

Example:

For 0x12345678:
Address: 0x00 0x01 0x02 0x03

Value: 0x12 0x34 0x56 0x78

Little-Endian:

Bytes are stored from the least

significant to the most significant.

Example:

For 0x12345678:
Address: 0x00 0x01 0x02 0x03

Value: 0x78 0x56 0x34 0x12

Why Endianness Matters

Data Exchange Between Systems:
Different systems use different byte
orders, so endianness can cause
misinterpretation of data if not handled
properly.
Example: Sending binary data between a
big-endian server and a little-endian client.

Network Protocols:
Protocols like IP standardize on big-
endian (network byte order).
Data often needs to be converted to big-
endian format for network communication.

Example:
Consider a 4-byte integer
int x = 0x12345678;.

● In a little-endian system:
Stored as [0x78][0x56][0x34][0x12].

● In a big-endian system:
Stored as [0x12][0x34][0x56][0x78].

Endianness and Structs:
When working with structs and unions in C,
remember that individual fields might be accessed
differently due to the system’s endianness.

Practical Applications of Endianness

Data Serialization:
Convert data to a standard byte order
before saving or sending it across
networks.

Networking:
● Convert to network byte order (big-

endian) for compatibility.
● Functions in <arpa/inet.h> (e.g.,

htonl, ntohl) are used to handle this
conversion.

Binary File Handling:
Read and write binary files considering
endianness to ensure consistency across
platforms.

Practice Problems on Endianness

Endianness Detection:
Modify the detection code to store the result in a

variable, then use it to decide data serialization.

Byte-Swap Function:

Write a function that swaps bytes in an integer
(e.g., 0x12345678 to 0x78563412).

Hint: Use bitwise operators.

Network Byte Order Conversion:
Use functions like htonl and ntohl to convert a

uint32_t to network byte order and back, then

print the result.

Memory Layout:
Given a float variable, use a union with a

char[4] to print each byte individually on both

big- and little-endian systems.

Introduction to Function Pointers

What Are Function Pointers?

● Function pointers are pointers

that point to the address of a

function in memory.

● They allow functions to be

passed as arguments, stored in

arrays, and returned from other

functions.

● Enable dynamic function calls,

which can make code more

flexible and modular.

Why Use Function Pointers?

● Useful in callback functions, sorting,

event-driven programming, and

implementing state machines.

● Improve modularity by allowing you

to switch between different functions

at runtime.

Declaring Function Pointers

Assigning a Function to a Pointer:

int my_function(int a, int b)
{ return 0;}

func_ptr = &my_function; //fashion 1

// assigning a value to the variable
//You can omit the '&' as shown below

func_ptr = my_function; //same effect as fashion 1

Calling a Function via a Pointer:

(*func_ptr)(arg1, arg2);

// Call using the function pointer
// also works without *

func_ptr(arg1, arg2);

Syntax:
return_type (*pointer_name)(parameter_type(s)_list);

Example:
int (*func_ptr)(int, int);
// Pointer to a function taking two int arguments and returning int

Using Function Pointers in Code

Explanation:

operation can point to

either add or subtract and

execute different functions

at runtime.

#include <stdio.h>

int add(int a, int b) { return a + b; }
int subtract(int a, int b) { return a - b; }

int main() {
int (*operation)(int, int); // Function pointer declaration
operation = add;
printf("Add: %d\n", operation(5, 3)); // Output: 8

operation = subtract;
printf("Subtract: %d\n", operation(5, 3)); // Output: 2

return 0;
}

Function Pointers as Function Parameters

Explanation:

execute can take any

function that matches the

(int, int) signature.

#include <stdio.h>

void execute(int (*operation)(int, int), int x, int y) {
printf("Result: %d\n", operation(x, y));

}

int multiply(int a, int b) { return a * b; }

int main() {
// Pass 'multiply' as a callback function
execute(multiply, 4, 5);
return 0;

}

Function Pointer Arrays

Using Arrays of Function Pointers:

● Enables selecting different functions

at runtime using an index.

● Common in implementing simple

menu systems or state-based logic.

Explanation: operations is an array of

function pointers, allowing access to

different functions using an index.

#include <stdio.h>

int add(int a, int b) { return a + b; }

int subtract(int a, int b) { return a - b; }

int multiply(int a, int b) { return a * b; }

int main() {

int (*operations[])(int, int) = {add, subtract, multiply};

for (int i = 0; i < 3; i++) {
printf("Result: %d\n", operations[i](6, 2));

}

return 0;
}

Applications of Function Pointers

Callback Functions:
Often used in libraries or APIs to perform

custom actions when an event occurs.
E.g., a sorting function might take a custom
comparison function.

Event-Driven Programming:
Allows functions to be registered for specific
events (e.g., GUI programming, signal

handling).

State Machines:
Enables switching between different states in
embedded systems, games, etc.

Custom Sorting:
Function pointers allow sorting based on
different criteria by passing in custom
comparator functions.

Practice Problems with Function Pointers

Custom Calculator:
Implement a calculator using function pointers,

allowing the user to choose operations (add,

subtract, multiply, divide) at runtime.

Callback Sorting:
Write a sorting function that takes a function

pointer as a comparator to sort an array of

integers in ascending or descending order.

Menu System:
Create a simple menu-based program where

each menu option corresponds to a function

pointer. Implement options such as "print,"

"calculate," and "exit."

	Slide 1: Introduction to Computing Advanced Things - I
	Slide 2: Recall Array
	Slide 3: 2D Array
	Slide 4: 2D Array (contd.)
	Slide 5: 3D Array
	Slide 6: 3D Array (contd.)
	Slide 7: Memory layout of Arrays: Row-Major and Column-Major
	Slide 8: Memory Layout of 2D Arrays
	Slide 9: Memory Layout of 3D Arrays
	Slide 10: Visual Representation of 3D Array Layout
	Slide 11: Memory Layout of n-D Arrays
	Slide 12: Array of Pointers
	Slide 13: Pointer to an Array
	Slide 14: Accessing Elements using Pointer to an Array
	Slide 15: Differences Between Pointer to Array and Array of Pointers
	Slide 16: Applications and Practice Problems
	Slide 17: Introduction to Bitwise Operators
	Slide 18: Bitwise AND Operator (&), Bitwise OR Operator (|)
	Slide 19: Bitwise XOR Operator (^), Bitwise NOT Operator (~)
	Slide 20: Bitwise Shift Operators (<<, >>)
	Slide 21: Practical Applications of Bitwise Operators
	Slide 22: Bitwise Operator Practice Problems
	Slide 23: Introduction to Variadic Functions
	Slide 24: Syntax of Variadic Functions
	Slide 25: Basic Example of Variadic Function
	Slide 26: Understanding Argument Types
	Slide 27: Handling Variable Argument Types
	Slide 28: Common Pitfalls and Considerations
	Slide 29: Introduction to Standard I/O Streams in C
	Slide 30: Standard Input (stdin)
	Slide 31: Standard Output (stdout)
	Slide 32: Standard Error (stderr)
	Slide 33: Using fprintf and Redirection with Standard Streams
	Slide 34: Best Practices with Standard Streams
	Slide 35: Practice Problems
	Slide 36: Introduction to enum in C
	Slide 37: Assigning Custom Values in enum
	Slide 38: enum Usage and Applications
	Slide 39: Best Practices with enum
	Slide 40: Introduction to Unions in C
	Slide 41: Applications of Unions
	Slide 42: Usage examples of Unions
	Slide 43: Best Practices with Unions
	Slide 44: What is Endianness?
	Slide 45: Understanding Big-Endian and Little-Endian
	Slide 46: Why Endianness Matters
	Slide 47: Practical Applications of Endianness
	Slide 48: Introduction to Function Pointers
	Slide 49: Declaring Function Pointers
	Slide 50: Using Function Pointers in Code
	Slide 51: Function Pointers as Function Parameters
	Slide 52: Function Pointer Arrays
	Slide 53: Applications of Function Pointers

