
1

Linked List

2

List
 A list refers to a sequence of data items
Example: An array

 The array index is used for accessing and
manipulation of array elements

Problems with arrays
 The array size has to be specified at the

beginning (at least during dynamic allocation)
 realloc can be used to readjust size in middle, but

contiguous chunk of memory may not be available
 Deleting an element or inserting an element may

require shifting of elements
 Wasteful of space

3

Linked List
 A completely different way to represent a

list
Make each data in the list part of a structure
The structure also contains a pointer or link to

the structure (of the same type) containing the
next data

This type of list is called a linked list
Structure 1 Structure 2 Structure 3

data data data

4

Forming a linked list
 Let each structure of the list (lets call it node) have

two fields:
One containing the data
The other containing the address of the

structure holding the next data in the list
 The structures in the linked list need not be

contiguous in memory
They are ordered by logical links that are stored

as part of the data in the structure itself
The link is a pointer to another structure of the

same type

5

Contd.
 struct node

 {
 int data;
 struct node *next;
 }

 The pointer variable next contains either the
address of the location in memory of the
successor list element or the special value NULL
defined as 0
 NULL is used to denote the end of the list (no successor

element)
 Such structures which contain a member field

pointing to the same structure type are called self-
referential structures

data

node
next

6

Example: nodes of the list

struct node a, b, c;
a.data = 1;
b.data = 2;
c.data = 3;
a.next = b.next = c.next = NULL;

1 NULL

data next

a
2 NULL

data next

b
3 NULL

data next

c

7

Chaining these together

a.next = &b;
b.next = &c;

1

data next

a
2

data next

b
3

data next

c
NULL

What are the values of :
• a.next->data
• a.next->next->data

8

Chaining these together

a.next = &b;
b.next = &c;

1

data next

a
2

data next

b
3

data next

c
NULL

What are the values of :
• a.next->data
• a.next->next->data

2
3

9

Linked Lists
 A singly linked list is a

data structure
consisting of a
sequence of nodes

 Each node stores
 data
 link to the next node

data
next

node

NULL

10

Contd.
 A head pointer addresses the first element of

the list
 Each element points at a successor element
 The last element has a link value NULL

NULL

head

11

Contd.
 In general, a node of the linked list may be

represented as

 struct node_name
 {
 type member1;
 type member2;
 ………
 struct node_name *next;
 };

Name of the type of nodes

Data items in each
element of the list

Link to the next
element in the list

12

Example: list of student records
 Structure for each node

 struct stud
 {
 int roll;
 char name[30];
 int age;
 struct stud *next;
 };

 Suppose the list has three students’ records
 Declare three nodes n1, n2, and n3

 struct stud n1, n2, n3;

13

Contd.

 Create the links between the nodes
 n1.next = &n2 ;
 n2.next = &n3 ;
 n3.next = NULL ; /* No more nodes follow */

 The final list looks like

n1 n2 n3

roll
name

age
next

14

Code for the Example
#include <stdio.h>
struct stud
 {
 int roll;
 char name[30];
 int age;
 struct stud *next;
 };

int main()
{
 struct stud n1, n2, n3;
 struct stud *p;
 scanf (“%d %s %d”, &n1.roll, n1.name, &n1.age);
 scanf (“%d %s %d”, &n2.roll, n2.name, &n2.age);
 scanf (“%d %s %d”, &n3.roll, n3.name, &n3.age);

15
15

 n1.next = &n2 ;
 n2.next = &n3 ;
 n3.next = NULL ;

 /* Now traverse the list and print the
elements */

 p = &n1 ; /* point to 1st element */
 while (p != NULL)
 {
 printf (“\n %d %s %d”,
 p->roll, p->name, p->age);
 p = p->next;
 }
 return 0;
}

16
16

Alternative Way

 Instead of statically declaring the structures n1,
n2, n3,
Dynamically allocate space for the nodes
Use malloc individually for every node allocated

 This is the usual way to work with linked lists, as
number of elements in the list is usually not
known in advance (if known, we could have
used arrays)

 See examples next

17

Example of dynamic node allocation

15 18 12 7

NULL

Storing a set of elements = {15,18,12,7}

struct node {
 int data ;
 struct node * next ;
} ;
struct node *p, *q;

data next

int node *

18

q = (struct node *) malloc(sizeof(struct node));
 q->data=18; q->next = NULL;

p = (struct node *) malloc(sizeof(struct node));
 p->data=15;

15

NULL

15 18

p

p

q

p->next = q;

 NULL

15 18 p

q

struct node {
 int data ;
 struct node * next ;
} ;
struct node *p, *q;

Adding 15
and 18 only

19

Traversing the elements added
struct node {
 int data;
 struct node * next;
 };
int main() {
 struct node *p,*q,*r;
 p = (struct node *) malloc(sizeof(struct node));
 :
 r=p;
 while(r!=NULL){
 printf("Data = %d \n",r->data);
 r=r->next;
 }
 return 0;
}

Output

 Data = 15
 Data = 18

We could have
done anything else
other than printing
as we traverse each
element, like
searching for
example. Just like
traversing an array.

20

Contd.
 We assumed two elements in the list, so took

two pointers p and q
 What if the number of elements are not known?

 Precisely the reason we use linked list
 Solution:

Remember the address of the first element in a
special pointer (the head pointer), make sure to not
overwrite it

 Any other pointer can be reused

21

Example: adding n elements read from
keyboard

int main() {
 int n, i;
 struct node *head = NULL, *p, *prev;
 scanf(“%d”, &n);
 for (i = 0; i < n; ++i) {
 p = (struct node *) malloc(sizeof(struct node));
 scanf(“%d”, &p->data);
 p->next = NULL;
 if (head == NULL) head = p;
 else prev->next = p;
 prev = p;
 }
 return 0;
}

head changes only
once, when the first
element is added

prev remembers
the pointer to the
last element added,
p is linked to its
next field

p and prev are
reused as many
times as needed

22

Example: printing an arbitrary sized list

int main()
{
 int n, i;
 struct node *head = NULL, *p;
 :
 p = head;
 while (p != NULL) {
 printf(“%d “, p->data);
 p = p->next;
 }
 return 0;
}

Assumed that the
list is already
created and head
points to the first
element in the list

p is reused to point
to the elements in
the list (initially, to
the first element)

When p points to
the last element, p-
>next = NULL, so
the loop terminates
after this iteration

23

Important to remember
 Store the address of the first element added in a

separate pointer (head in our examples), and
make sure not to change it
 If you lose the start pointer, you cannot access any

element in the list, as elements are only accessible
from the next pointers in the previous element

 In the print example, we could have reused head,
(head=head->next instead of p=p->next) as we do
not need to remember the start pointer after
printing the list, but this is considered bad practice,
so we used a separate temporary pointer p

24

 Function to print a list

void display (struct node *r)
 {
 struct node *p = r;
 printf(“List = {”);
 while(p != NULL) {
 printf("%d, ", p->data);
 p = p->next;
 }
 printf(“}\n”);
 }

The pointer to the
start of the list
(head pointer) is
passed as
parameter

25

Common Operations on Linked
Lists
 Creating a linked list (already seen)
 Printing a linked list (already seen)
 Search for an element in a linked list (can be

easily done by traversing)
 Inserting an element in a linked list

 Insert at front of list
 Insert at end of list
 Insert in sorted order

 Delete an element from a linked list

26

Search for an element

 struct node *search (struct node *r, int value)
 {
 struct node *p;
 p = r;
 while (p!=NULL){
 if (p->data == value) return p;
 p = p->next;
 }
 return p;
 }

Takes the
head pointer
as parameter

Traverses the
list and
compares
value with
each data

Returns the
node with the
value if
found, NULL
otherwise

27

Insertion in a list
 To insert a data item into a linked list

involves
 creating a new node containing the data
 finding the correct place in the list, and
 linking in the new node at this place

Correct place may vary depending on what
is needed
Front of list
End of list
Keep the list in sorted order
…

28

 Insert in front of list

 struct node *insert(struct node *r, int value)
 {
 struct node *p;
 p = (struct node *) malloc(sizeof(struct node));
 p->data = value;
 p ->next = r;
 return p;
 }

Takes the
head pointer
and the value
to be inserted
(NULL if list is
empty)

Inserts the
value as the
first element of
the list

Returns the
new head
pointer value

29

 Contd.

15 18
p

r

3

15 18
p

r

3

18

r

3 …

…

…

30

 Using the Insert Function
void display (struct node *);
struct node * insert(struct node * , int);
int main()
{ struct node *head;
 head = NULL;
 head = insert(head, 10);
 display(head);
 head = insert(head, 11);
 display(head);
 head = insert(head, 12);
 display(head);
 return 0;
}

 List = {10, }
 List = {11, 10, }
 List = {12, 11, 10, }

Output

31

 Insert at end
 struct node *insert_end(struct node *r,
 int value)
 { struct node *p,*q;
 p = (struct node *) malloc(sizeof(struct node));
 p->data = value;
 p ->next = NULL;
 if (r==NULL) return p; /* list passed is empty */
 q=r;
 while (q->next!=NULL)
 q=q->next; /* find the last element */
 q->next =p;
 return r;
 }

Takes the
head pointer
and the value
to be inserted
(NULL if list is
empty)

Inserts the
value as the
last element of
the list

Returns the
new head
pointer value

32

 Contd.

15 11
p

r

4 …
NULL NULL

15 11
p

r

4 …
NULL q

11
r

4 …
q NULL

q

33

 Using the Insert at End Function
void display (struct node *);
struct node * insert(struct node * , int);
struct node * insert_end(struct node * , int);
int main()
{
 struct node *start;
 start = NULL;
 start = insert_end(start, 10);
 display(start);
 start = insert_end(start, 11);
 display(start);
 start = insert_end(start, 12);
 display(start);
 return 0;
}

 List = {10, }
 List = {10, 11, }
 List = {10, 11, 12, }

Output

34

Insertion in Ascending Order

 Create new node for the 7
 Find correct place – when ptr finds the 8 (7 < 8)
 Link in new node with previous (even if last) and ptr

nodes
 Also check insertion before first node!

3 5 8 12 -

7 new

first prev ptr

35

 Insert in ascending order & sort
struct node * insert_asc(struct node * r, int value)
{ struct node *p, *q, *new;
 new = (struct node *) malloc(sizeof(struct node));
 new->data = value; new ->next = NULL;
 p = r; q = p;
 while(p!=NULL) {
 if (p->data >= value) { /* insert before */
 if (p==r) { new->next =r; /* insert at start */
 return new; }
 new->next = p; /* insert before p */
 q->next = new;
 return r; }
 q = p;
 p = p->next; } /* exists loop if > largest */
 if (r==NULL) return new; /* first time */
 else q->next = new; /* insert at end */
 return r; }

int main()
{
 struct node *start;
 int i,n,value;
 start = NULL;
 scanf("%d",&n);
 for(i=0; i<n; i++) {
 printf("Give Data: ");
 scanf("%d",&value);
 start = insert_asc(start, value);
 }
 display(start);
 return 0;
}

36

Deletion from a list
 To delete a data item from a linked list
Find the data item in the list, and if found
Delink this node from the list
Free up the malloc’ed node space

37

Example of Deletion

 When ptr finds the item to be deleted, e.g. 8, we need
the previous node to make the link to the next one
after ptr (i.e. ptr -> next)

 Also check whether first node is to be deleted

3 5 8 12 -

prev ptr first

38

 Deleting an element
struct node * delete(struct node * r, int value)
{ struct node *p, *q;
 p =r;
 q = p;
 while(p!=NULL) {
 if (p->data == value){
 if (p==r) r = p->next;
 else q->next = p->next;
 p->next = NULL;
 free(p);
 return r;
 }
 else { q = p;
 p = p->next;
 }
 }
 return r;
}

15 11 4 … …
q p

15 11 4 … …
q p NULL

15 11 … …
q

delete(r,4)

39

Exercises

 Print a list backwards (try a recursive print)
 Count the number of elements in a list

(both using and not using recursion)
 Concatenate two lists
 Reverse a list

	Linked List
	List
	Linked List
	Forming a linked list
	Contd.
	Example: nodes of the list
	Chaining these together
	Chaining these together
	Linked Lists
	Contd.
	Contd.
	Example: list of student records
	Contd.
	Code for the Example
	Slide Number 15
	Alternative Way
	Example of dynamic node allocation
	Adding 15 and 18 only
	Traversing the elements added
	Contd.
	Example: adding n elements read from keyboard
	Example: printing an arbitrary sized list
	Important to remember
	 Function to print a list
	Common Operations on Linked Lists
	Search for an element
	Insertion in a list
	 Insert in front of list
	 Contd.
	 Using the Insert Function
	 Insert at end
	 Contd.
	 Using the Insert at End Function
	Insertion in Ascending Order
	 Insert in ascending order & sort
	Deletion from a list
	Example of Deletion
	 Deleting an element
	Exercises

