
Assignment 8

Topics: Advanced String Operations and Preprocessor Directives

Section A8.1: [Advanced String Operations]

A8.1a: Write a C program to concatenate two strings using the strcat() function from string.h.

1. Instructions:

2. Include the string.h library.

3. Declare two character arrays (strings), for example: char str1[100] and char str2[100].

4. Use the strcat() function to concatenate str2 at the end of str1.

5. Print the concatenated result.

6. Example:

Input: str1 = "Hello, ", str2 = "World!"

Output: "Hello, World!"

A8.1b: Write a program to compare two strings lexicographically using strcmp() from string.h.

1. Instructions:

2. Include the string.h library.

3. Declare two character-arrays for strings, e.g., char str1[100] and char str2[100].

4. Use the strcmp() function to compare str1 and str2.

5. Print whether the strings are equal, or if one is lexicographically larger.

6. Example:

Input: str1 = "apple", str2 = "banana"

Output: "apple" is lexicographically smaller than "banana".

A8.1c: Write a C program to reverse a string using strrev() (or manually reverse if strrev() is

unavailable in some compilers).

1. Instructions:

2. Declare a character array for a string.

3. If strrev() is supported by your compiler:

4. Use strrev() to reverse the string.

5. If not supported:

6. Use a loop with two pointers, one starting at the beginning and one at the end, and swap

the characters until the pointers meet in the middle.

7. Print the reversed string.

8. Example:

Input: "Hello"

Output: "olleH"

A8.1d: Write a program to find the length of a string using strlen() from string.h.

1. Instructions:

2. Include the string.h library.

3. Declare a character array for a string, e.g., char str[100].

4. Use strlen() to find and print the length of the string.

5. Example:

Input: "Programming"

Output: 11

A8.1e: [Bonus] Write a program to remove all occurrences of a given character from a string.

1. Instructions:

2. Declare a character array for the string, e.g., char str[100].

3. Accept a character from the user to remove.

4. Traverse the string using a loop, and whenever the given character is encountered, skip

adding it to the result string.

5. Print the modified string.

6. Example:

Input: str = "hello world", char = 'o'

Output: "hell wrld"

A8.1f: Write a program to convert a string to uppercase using strupr() (or manually if not

available).

Instructions:

1. If strupr() is available, use it to convert the string to uppercase.

2. If it's not supported by the compiler, loop through each character, check if it's a lowercase

letter, and convert it to uppercase manually.

Example: Input: "hello" Output: "HELLO"

Hint: You can manually convert a lowercase letter by subtracting 32 from its ASCII value.

A8.1g: Write a program to tokenize a string into words using strtok() from string.h.

Instructions:

1. Use strtok() to split a string into words based on a given delimiter (e.g., space or

comma).

2. Print each token (word) on a new line.

Example: Input: "C is,fun" Output:

C

is

fun

Hint: Call strtok() repeatedly in a loop until it returns NULL.

A8.1h: [Bonus]: Write a program to count the occurrences of a substring in a string using

strstr().

Instructions:

1. Use strstr() to find all occurrences of a given substring in a string.

2. Loop through the string and count how many times the substring appears.

Example: Input: str = "the theorems in the thesis are important", substring = "the"

Output: 3

Hint: Use strstr() in a loop to move through the string.

Section A8.2: [Preprocessor Directives]

A8.2a: Define and use a macro that calculates the square of a number.

1. Instructions:

2. Use the #define preprocessor directive to create a macro called SQUARE(x), which

returns x * x.

3. Call this macro in main() to compute the square of a user-provided number.

4. Example:

#define SQUARE(x) (x * x)

Input: 4

Output: 16

A8.2b: Write a program that uses the #ifdef and #ifndef preprocessor directives to conditionally

include code.

1. Instructions:

2. Define a macro called DEBUG.

3. Use #ifdef DEBUG to print debugging information when the macro is defined.

4. Use #ifndef DEBUG to print normal program information if DEBUG is not defined.

5. Comment/uncomment the #define DEBUG line to see the effect.

6. Example:

#define DEBUG

#ifdef DEBUG

printf("Debugging is ON\n");

#else

printf("Debugging is OFF\n");

#endif

A8.2c: Write a C program that uses the #include directive to include a custom header file. Create

your own header file that contains a function prototype, and implement that function in the main

program.

1. Instructions:

2. Create a custom header file mymath.h that contains a function prototype for a function

that calculates the cube of a number.

3. In your main program, use #include "mymath.h" to include the header file.

4. Implement the function in the main program and use it to compute the cube of a number.

5. Example:

// mymath.h

int cube(int x);

// main.c

#include "mymath.h"

int cube(int x) {

return x * x * x;

}

Input: 3

Output: 27

A8.2d: [Bonus] Write a program that uses #pragma to suppress warnings in the GCC compiler

for a specific part of the code.

1. Instructions:

2. Use the #pragma directive to disable a specific warning, such as an unused variable

warning, in a section of the code.

3. Write a function that has an unused variable and suppress the warning using #pragma.

4. Re-enable warnings after the section of code.

5. Example:

#pragma GCC diagnostic push

#pragma GCC diagnostic ignored "-Wunused-variable"

void test() {

int unusedVar;

}

#pragma GCC diagnostic pop

Section A8.3: [Preprocessor: Viewing Preprocessed Code]

A8.3a: Write a program that demonstrates the use of macros and conditional compilation. Use

the gcc -E command to view the preprocessed code.

1. Instructions:

2. Write a simple program that uses macros and #ifdef/#ifndef directives.

3. Compile the program using the following command to see the preprocessed code:

gcc -E your_program.c -o preprocessed_output.txt

1. Open the preprocessed_output.txt file to view the expanded macros and removed

comments.

2. Example:

#define MAX 100

#ifdef MAX

printf("MAX is defined\n");

#endif

1. Output in Preprocessed Code:

printf("MAX is defined\n");

Section A8.4: [Additional Problems]

A8.4a: Problem 1 (Multiple String Operations with Preprocessor Directives)

Write a program that accepts a sentence from the user and performs the following operations:

1. Convert the sentence to uppercase using strupr() (or manually if unavailable).

2. Count the number of words in the sentence using strtok().

3. Find the length of the sentence using strlen().

4. Remove all occurrences of a specific character using a loop.

Instructions:

1. Use the #define preprocessor directive to define the character to be removed (e.g.,

#define REMOVE_CHAR 'a').

2. If DEBUG is defined, print the steps of each operation (e.g., "Converting to uppercase...").

3. Include string.h for built-in functions.

Example: Input: "C programming is awesome!" Output:

1. Uppercase: "C PROGRAMMING IS AWESOME!"

2. Word Count: 4

3. Length: 25

4. After removing 'a': "C progrmming is wesome!"

Hint: Use strtok() for tokenizing and strlen() for string length.

A8.4b: Problem 2 (Preprocessor Macros with String Functions)

Write a C program that performs the following:

1. Accept two strings from the user.

2. Concatenate the two strings using strcat().

3. Compare the strings using strcmp() and print whether they are equal or one is larger.

4. Define a macro called TOGGLE_CASE(c) using the preprocessor to toggle the case of a

character. Use this macro to toggle the case of the concatenated string (convert

uppercase to lowercase and vice versa).

Instructions:

1. Use the #define directive to create the TOGGLE_CASE macro.

2. Include conditional compilation: If DEBUG is defined, print intermediate steps (e.g.,

"Comparing strings...").

3. Use string.h for built-in string functions.

Example: Input: "Hello", "World" Output:

1. Concatenated: "HelloWorld"

2. Comparison: "Hello" is lexicographically smaller than "World"

3. Toggled Case: "hELLOwORLD"

Hint: The macro TOGGLE_CASE(c) can be defined as:

#define TOGGLE_CASE(c) (c >= 'a' && c <= 'z' ? c - 32 : (c >= 'A' && c <= 'Z' ? c + 32 : c))

	Assignment 8
	Section A8.1: [Advanced String Operations]
	Section A8.2: [Preprocessor Directives]
	Section A8.3: [Preprocessor: Viewing Preprocessed Code]
	Section A8.4: [Additional Problems]

