
Assignment 10 

Topics: File Access Methods and Command Line Arguments 

Section A10.1: [File Access Methods] 

A10.1a: Write a program to open a text file in read mode and display its content line by line. 

Instructions: 

1. Use fopen() to open the file in "r" mode. 

2. Use fgets() in a loop to read each line from the file and print it. 

3. Ensure that the file is properly closed using fclose(). 

Example: 

Input (file content): 

Hello, this is line 1. 

This is line 2. 

 

Output: 

Hello, this is line 1. 

This is line 2. 

Hint: Handle cases where the file doesn't exist by checking if the file pointer is NULL. 

A10.1b: Write a program to write data to a text file using write mode ("w"). If the file exists, its 

contents will be overwritten. 

Instructions: 

1. Use fopen() in "w" mode to create or overwrite the file. 

2. Accept multiple lines of input from the user and write them to the file using fprintf(). 

3. Close the file using fclose(). 

Example: 

Input: Write two lines to the file: 

Line 1: Hello World 

Line 2: C Programming 

 

Output (in file): 

Hello World 

C Programming 



Hint: The "w" mode overwrites the file, so any existing content is lost. 

A10.1c: Write a program to append data to an existing file using append mode ("a"). 

Instructions: 

1. Open the file in "a" mode. 

2. Append additional lines of text provided by the user. 

3. Ensure that the previous content is preserved, and new content is appended at the end. 

Example: 

Input (file already contains): 

This is existing content. 

 

Additional input (to append): 

This is appended content. 

 

Output (in file): 

This is existing content. 

This is appended content. 

Hint: The "a" mode appends data at the end of the file, without overwriting existing content. 

A10.1d: Write a program to randomly access a specific part of a file using fseek() and 

ftell(). 

Instructions: 

1. Open a file in "r" mode. 

2. Use fseek() to move to a specific byte position in the file. 

3. Use ftell() to display the current file position. 

4. Read and display the content starting from that position. 

Example: 

Input (file content): Hello World 

Seek position: 6 

Output: World 

Hint: Use fseek(file, offset, SEEK_SET) to move the file pointer and ftell() to display 

the current pointer position. 

A10.1e: Write a program to copy binary data from one file to another using binary file access 

mode. 

Instructions: 



1. Open a binary file in "rb" mode and another file in "wb" mode for writing. 

2. Use fread() and fwrite() to copy the content. 

3. Close both files after copying. 

Example: 

Input (binary file): [Binary Data] 

Output (copied to another file): [Same Binary Data] 

Hint: Binary file access allows copying raw data, unlike text files which interpret content as 

characters. 

Section A10.2: [Command Line Arguments] 

A10.2a: Write a program that takes a file name as a command line argument and displays the 

file's content. 

Instructions: 

1. Access the file name from argv[]. 

2. Open the file in "r" mode. 

3. Use fgets() to read the file and display its contents. 

4. Handle errors in case the file is not found or cannot be opened. 

Example: 

Command: ./program file.txt 

Output (content of file.txt): 

This is the content of file.txt. 

Hint: Use argc to ensure that the correct number of arguments is provided. 

A10.2b: Write a program that accepts two numbers from the command line arguments and 

performs basic arithmetic operations (addition, subtraction, multiplication, division). 

Instructions: 

1. Extract the two numbers from argv[] and convert them to integers using atoi(). 

2. Perform the four basic arithmetic operations (add, subtract, multiply, divide). 

3. Display the results. 

Example: 

Command: ./program 10 5 

Output: 

Addition: 15 

Subtraction: 5 



Multiplication: 50 

Division: 2 

Hint: Use argc to verify that the correct number of arguments is provided. 

A10.2c: Write a program that counts the number of words in a file provided via a command 

line argument. 

Instructions: 

1. Use argv[] to accept the file name. 

2. Open the file in "r" mode. 

3. Read through the file, count the number of words, and display the count. 

4. Close the file. 

Example: 

Command: ./program textfile.txt 

Output: Number of words = 50 

Hint: Use space, newline, and tab characters as word delimiters to count the words. 

A10.2d: Write a program that accepts two file names via command line arguments. The 

program should copy the contents of the first file to the second file. 

Instructions: 

1. Use argv[] to get the source and destination file names. 

2. Open the source file in "r" mode and the destination file in "w" mode. 

3. Copy the contents from the source to the destination file. 

4. Close both files after copying. 

Example: 

Command: ./program source.txt destination.txt 

Output: Contents of source.txt copied to destination.txt 

Hint: Handle error checking to ensure both files are opened successfully. 

Section A10.3: [Combining File Operations, CLA, DMA, and Structures] 

A10.3a: Write a program that accepts a file name from the command line, reads the file, and 

dynamically allocates memory to store its contents. After storing the contents, print the file's 

data. 

Instructions: 



1. Use argv[] to get the file name from the command line. 

2. Open the file in "r" mode. 

3. Dynamically allocate memory using malloc() to store the file's contents. 

4. Read the file's content into the allocated memory and print it. 

5. Free the allocated memory after use. 

Example: 

Command: ./program file.txt 

Output (file.txt content): "Hello, this is file content." 

Hint: Use fseek() and ftell() to determine the file size for allocating memory. 

A10.3b: Write a program that accepts a file name and an integer N from the command line. 

The program should read the first N lines from the file and store them in a dynamically 

allocated array of strings. Display the lines on the screen. 

Instructions: 

1. Use argv[] to get the file name and the integer N from the command line. 

2. Open the file in "r" mode. 

3. Dynamically allocate memory for storing N lines of text. 

4. Read the first N lines into the dynamically allocated array and display them. 

5. Free the allocated memory after use. 

Example: 

Command: ./program file.txt 3 

Output (first 3 lines of file.txt): 

Line 1: ... 

Line 2: ... 

Line 3: ... 

Hint: Use malloc() to allocate memory for each line and fgets() to read each line from the 

file. 

A10.3c: Write a program to manage a list of students, each with a name, roll_number, and 

marks. Accept the file name via command line arguments, load student records from the file 

into a dynamically allocated array of structures, and display the records. 

Instructions: 

1. Define a Student structure with fields: name, roll_number, and marks. 

2. Use argv[] to get the file name from the command line. 

3. Open the file in "r" mode. 



4. Dynamically allocate memory for an array of Student structures based on the number of 

records in the file. 

5. Load the student data from the file into the structure array and display the records. 

6. Free the allocated memory after use. 

Example: 

Command: ./program students.txt 

Output: 

Student 1: Name: John, Roll Number: 101, Marks: 85 

Student 2: Name: Alice, Roll Number: 102, Marks: 92 

Hint: Use fscanf() to read the data from the file into the structure array. 

A10.3d: Write a program that accepts two file names from the command line. The program 

should load student records from the first file, sort the records by marks in descending order, 

and save the sorted records to the second file. 

Instructions: 

1. Define a Student structure with fields: name, roll_number, and marks. 

2. Use argv[] to get the source and destination file names from the command line. 

3. Load student records from the source file into a dynamically allocated array of 

structures. 

4. Sort the array based on the marks field. 

5. Save the sorted records to the destination file. 

6. Free the allocated memory after use. 

Example: 

Command: ./program students.txt sorted_students.txt 

Output (in sorted_students.txt): 

Alice, Roll Number: 102, Marks: 92 

John, Roll Number: 101, Marks: 85 

Hint: Use a sorting algorithm (e.g., bubble sort) to sort the array and fprintf() to write the 

sorted data to the destination file. 

 


	Assignment 10
	Section A10.1: [File Access Methods]
	Section A10.2: [Command Line Arguments]
	Section A10.3: [Combining File Operations, CLA, DMA, and Structures]


