
Introduction to Computing
MCS1101B

Lecture 2: Python

Sets : A Collection type

● Unordered list of unique immutable elements

● An empty set can be created using a

call to set()

● A new set can ne created from any sequence

types by the function set()

>>> a = set() --> set() /null set

>>> b = set([10,10,20, 40, 60]) --> {10,20, 40,60}

>>> c = set(('1','2','a')) --> {'1', '2', 'a'}

>>> d = set('abracadabra')--> ???

>>> basket = {'apple', 'orange',

'apple', 'pear', 'orange', 'banana'}

note that duplicates have been removed

>>> print(basket)

{'orange', 'banana', 'pear', 'apple'}

fast membership testing

>>> 'orange' in basket

True

>>> 'crabgrass' in basket

False

Sets (contd.)

>>> a =

set('abracadabra')

>>> b = set('alacazam')

>>> a # unique letters

in a

{'a', 'r', 'b', 'c', 'd'}

>>> b # unique

letters in b

{'a', 'l', 'c', 'z', 'm'}

Elements are added as:

>>> a.add('z')

>>> a

{'a', 'r', 'b', 'c', 'd',

'z'}

Elements are removed as:

>>> a.remove('r')

>>> a

{'a', 'b', 'c', 'd', 'z'}

>>> a - b # in a but not in b

{'r', 'd', 'b'}

>>> a | b # in a or b or both

{'a', 'c', 'r', 'd', 'b', 'm',

'z', 'l'}

>>> a & b # in both a and b

{'a', 'c'}

>>> a ^ b #in a or b but

not both

{'r', 'd', 'b', 'm', 'z', 'l'}

Dictionaries: A Mapping type

● Dictionaries store a mapping between a set of keys and a set of

values

○ Keys can be any immutable type (why only immutable?)

○ Values can be any type

○ A single dictionary can store values of different types

● You can define, modify, view, lookup or delete the key-value pairs

in the dictionary

Python's dictionaries are also known as hash tables and associative arrays

Creating & Accessing Dictionaries

Create an empty dictionary

>>> d1 = {}

Create a dictionary with initial values

>>>d={'user':'bozo', 'pswd':1234}

>>> d['user']

'bozo'

>>> d['pswd']

123

>>> d['bozo']

Traceback (innermost last):

File '<interactive

input>' line 1, in ?

KeyError: bozo

Updating & Removing in Dictionaries

>>> d = {'user':'bozo', 'pswd':1234}

>>> d['user'] = 'clown'

>>> d

{'user':'clown', 'pswd':1234}

Keys must be unique

Assigning to an existing key replaces its value

>>> d['id'] = 45

>>> d

{'user':'clown','id':45, 'pswd':1234}

Dictionaries are unordered

New entries can appear anywhere in output

Dictionaries work by hashing

Remove the entry for 'user'

>>> del d['user']

>>> d

{'pswd':1234, 'id':45}

Remove all entries in the dictionary

>>> d.clear()

Side note: del works on lists, too

>>> a=[1,2,3]

>>> del a[1]

>>> a

[1,3]

Useful Accessor Methods

>>> d = {'user':'bozo', 'pswd':1234, 'id':45}

>>> d.keys() # List of keys, VERY useful

['user', 'pswd', 'id']

>>> d.values() # List of values

['bozo', 1234, 34]

>>> d.items() # List of item tuples

[('user','bozo'), ('pswd',1234), ('id',45)]

Defining and Calling Functions in Python

The syntax for a function definition is:

>>> def myfun(x, y):

return x *

y >>> def myfun2():

print("hello")

The syntax for the function (defined

above) call is:

>>> myfun(3, 4)

12

>>> myfun2()

'hello'

● Functions in python are defined using

the keyword def

● You can give any name to the function

and it must always be unique within

your program

● The parameters are optional (or as per

your requirements)

● Parameter types are automatically

assigned based on the values passed

during function calls

● Returns from a fucntion is optional too

Functions without Returns

All functions in Python have a return value,

Even if no return line inside the code

Functions without a return line, returns the special value None

● None is a special constant in the language

● None is used like NULL or void in C language

● None is also logically equivalent to False

The interpreter doesn't print None

Default Values for Arguments in Functions

You can provide

default values for a

function's

arguments

These arguments

are optional when

the function is called

>>> def myfun(b, c=3, d="hello"):

return b + c

>>> myfun(5,3,"hello") # returns 8

>>> myfun(5,3) # returns 8

>>> myfun(5) # returns 8

>>> myfun(5,4) # returns 9

>>> myfun(5,"Hi") # returns error

>>> myfun(5,d="Hi") # returns 8

Keyword Arguments in Functions

You can call a function

with some or all of its

arguments out of order

as long as you specify their

names

You can also just use

keywords for a final

subset of the arguments.

>>> def myfun(a, b, c):

return a-b

>>> myfun(2, 1, 43)

1

>>> myfun(c=43, b=1, a=2)

1

>>> myfun(2, c=43, b=1)

1

>>> myfun(c=43, 2, b=1)

???

Functions are first-class objects

Functions can be used as

any other datatype, e.g.,

● Arguments to function

● Return values of

functions

● Assigned to variables

● Parts of tuples, lists, etc

>>> def square(x):

return x*x

>>> def applier(q, x):

return q(x)

>>> applier(square, 7)

49

Lambda Notation

Python uses a

lambda notation to create

anonymous functions

Python supports functional

programming idioms,

including closures and

continuation

>>> def applier(q, x):

return q(x)

>>> applier(lambda z: z * 4, 7)

28

Example: Lambda Notation

>>> f = lambda x,y : 2 * x + y

>>> f

<function <lambda> at 0x87d30>

>>> v = lambda x: x*x

>>> v

<function <lambda> at 0x87df0>

>>> vx = (lambda x: x*x)(100)

>>> f(3, 4)

10

>>> f(7, 1)

???

>>> v(10)

???

>>> vx

10000

Example: composition

>>> def square(x):

return x*x

>>> def twice(f):

return lambda x: f(f(x))

>>> twice

<function twice at 0x87db0>

>>> quad = twice(square)

>>> quad

<function <lambda> at 0x87d30>

>>> quad(5)

625

Explanation:

square(square(5)= ???

Example: closure

>>> def counter(start=0, step=1):

x = [start]

def _inc():

x[0] += step

return x[0]

return _inc

>>> c1 = counter()

>>> c2 = counter(100, -10)

>>> c1()

1

>>> c1()

2

>>> c1()

Guess ???

>>> c2()

90

>>> c2()

Guess ???

Logical Expressions

● True and False are constants in Python.

● Other values equivalent to True and False:

○ False: zero, None, empty container

or object

○ True: non-zero numbers, non-empty

objects

● Comparison operators: ==, !=, <, <=, etc.

○ X and Y have same value: X == Y

○ Compare with X is Y :

■ X and Y are two variables that

refer to the identical same

object.

● You can also combine Boolean

expressions.
○ True if a is True and b is True: a and b

○ True if a is True or b is True: a or b

○ True if a is False: not a

Use parentheses as needed to

disambiguate complex Boolean

expressions.

Special Properties of and & or

● Actually and and or don't return True or False but value of one of their

sub-expressions, which may be a non-Boolean value

○ X and Y and Z

○ If all are true, returns value of Z

● Otherwise, returns value of first false sub-expression
○ X or Y or Z

○ If all are false, returns value of Z

● Otherwise, returns value of first true sub-expression

● and & or use lazy evaluation, so no further expressions are evaluated

Conditional Expressions (kind of)

x = true_value if condition else false_value

Uses lazy evaluation:

First, condition is evaluated

If True, true_value is evaluated and returned

If False, false_value is evaluated and returned

Standard use:

x = (true_value if condition else false_value)

Control of Flow: if Statements

if x == 3:

print ("X equals 3.")

elif x == 2:

print ("X equals 2.")

else:

print ("X equals something else.")

print ("This is outside the 'if'.")

● Any number of elif keyword

can be used, same as else

if in C language

● Make sure the indentation

for if-elif-else remains the

same – see the example

on the left

Control of Flow: while Loops

x = 3

while x < 5:

print (x, "still in the loop")

x = x + 1

Outputs:
3 still in the loop
4 still in the loop

x = 6

while x < 5:

print (x, "still in the loop")

Outputs:

● You can use the keyword break

inside a loop to leave the while

loop entirely.

● You can use the keyword continue

inside a loop to stop processing the

current iteration of the loop and to

immediately go on to the next one.

Works the same as C Language

Python's higher-order functions

>>> def square(x):

return x*x

>>> def even(x):

return 0 == x % 2

>>> map(square, range(10,20))

[100, 121, 144, 169, 196, 225,

256, 289, 324, 361]

>>> filter(even, range(10,20))

[10, 12, 14, 16, 18]

>>> map(square, filter(even,

range(10,20)))

[100, 144, 196, 256, 324]

● Python supports higher-order

functions that operate on lists

similar to Scheme's

● But many Python programmers

prefer to use list

comprehensions, instead

List Comprehensions

>>>vals = [10,15,20,25]

>>>[x-10 for x in vals]

[0,5,10,15]

Another variation with condition
>>>[x for x in vals if x%2==0]

[10,20]

You can easily complicate your life as:
>>>x for x in [y-10 for y in vals] if

x%2==0]

[0,10]

● Why "comprehension"? The term

is borrowed from math's set

comprehension notation for

defining sets in terms of other sets

● A powerful and popular feature in

Python

● Generate a new list by applying a

function to every member of an

original list

● Python's notation:

[expression for name in list]

List Comprehensions (contd.)

● If list contains elements of different
types, then expression must operate
correctly on the types of all of list
members.

● If the elements of list are other
containers, then the name can consist
of a container of names that match the
type and "shape" of the list members.

>>> li = [('a', 1), ('b', 2), ('c', 7)]

>>> [n * 3 for (x, n) in li]

[3, 6, 21]

expression can also contain user-

defined functions.

>>> def subtract(a, b):

return a – b

>>> oplist = [(6, 3), (1, 7), (5, 5)]

>>> [subtract(y, x) for (x, y) in

oplist]

[-3, 6, 0]

List Comprehensions (contd.)

List comprehensions can be viewed as syntactic sugar for

a typical higher-order functions

[expressionfor name in list]

map(lambda name: expression, list)

[2*x+1 for x in [10, 20, 30]]

map(lambda x: 2*x+1, [10, 20, 30])

● Filter determines whether

expression is performed on each

member of the list.

● For each element of list, checks if

it satisfies the filter condition.

● If the filter condition returns

False, that element is omitted

from the list before the list

comprehension is evaluated.

>>> li = [3, 6, 2, 7, 1, 9]

>>> [elem*2 for elem in li if elem > 4]

[12, 14, 18]

Only 6, 7, and 9 satisfy the filter condition

So, only 12, 14, and 18 are produce.

List Comprehensions (contd.)

Including an if clause begins to show the benefits of the

sweetened form

[expression for name in list if filt]

map(lambda name . expression, filter(filt, list))

[2*x+1 for x in [10, 20, 30] if x > 0]

map(lambda x: 2*x+1, filter(lambda x: x > 0 , [10, 20, 30])

Since list comprehensions take a list

as input and produce a list as output, they

are easily nested

>>> li = [3, 2, 4, 1]

>>> [elem*2 for elem in

[item+1 for item in li]

]

[8, 6, 10, 4]

The inner comprehension produces:

[4, 3, 5, 2]

So, the outer one produces: [8, 6, 10, 4]

[e1 for n1 in [e1 for n1 list]]

map(lambda n1: e1, map(lambda n2: e2, list))

[2*x+1 for x in [y*y for y in [10, 20, 30]]]

map(lambda x: 2*x+1, map(lambda y: y*y, [10, 20, 30]))

For Loops / List Comprehensions

● Python's list comprehensions provide a natural

idiom that usually requires a for-loop in other

programming languages.
○ As a result, Python code uses many fewer for-loops

○ Nevertheless, it's important to learn about for-loops

● A for-loop steps through each of the items in a

collection type, or any other type of object which is

"iterable"

for <item> in <collection>:

<statements>

Example:

for ch in "Hello World":

print (ch)

● If <collection> is a list or a tuple, then

the loop steps through each element

of the sequence

● If <collection> is a string, then the

loop steps through each character of

the string

● <item> can be more than a single

variable name, e.g.,

for (x,y) in [(a,1),(b,2),(c,3)]:

print (x)

For loops & the range() function

● Since a variable often ranges over some

sequence of numbers, the range() function

returns a list of numbers from 0 up to but not

including the number we pass to it.

● range(5) returns [0,1,2,3,4]

● So we could say:

for x in range(5):

print (x)

(There are more complex forms of range() that

provide richer functionality…)

>>> ages = { "Sam" : 4, "Mary" : 3, "Bill" : 2 }

>>> ages

{'Bill': 2, 'Mary': 3, 'Sam': 4}

>>> for name in ages:

print name, ages[name]

Bill 2

Mary 3

Sam 4

A Note on Multiple Assignments

We've seen multiple assignment before:

>>> x, y = 2, 3

● You can also do it with sequences.

● The type and "shape" just has to match.

>>> (x, y, (w, z)) = (2, 3, (4, 5))

>>> [x, y] = [4, 5]

String Operations and Formatting

● A number of methods for the string class

perform useful formatting operations:

>>> "hello".upper()

'HELLO'

● Check the Python documentation for many

other handy string operations.

● The builtin str() function can convert an

instance of any data type into a string.

>>> “Hello ” + str(2)

“Hello 2”

Formatting a string in python. If can be done in two

ways.

>>> x = "abc"

>>> y = 34

The first way is the default python printing style.

>>> f"{x} xyz {y}" % (x, y)

'abc xyz 34'

The second way works like c. You can use

this method for forcing the outputs to be as

desired.

>>> "%s xyz %d" % (x, y)

'abc xyz 34'

>>> "%s xyz %f" % (x, y)

'abc xyz 34.000000'

String operations: Join and Split

Join turns a list of strings into one string

<separator_string>.join(<some_list>)

>>> ";".join(["abc", "def", "ghi"])

"abc;def;ghi"

Split turns one string into a list of strings

<some_string>.split(<separator_string>)

>>> "abc;def;ghi".split(";")

["abc", "def", "ghi"]

Split and join can be used in a list comprehension

in the following Python idiom:

>>> " ".join([s.capitalize() for s

in "this is a test ".split()])

'This Is A Test‘

For clarification:

>>> "this is a test" .split()

['this', 'is', 'a', 'test']

>>> [s.capitalize() for s in "this is

a test" .split()]

['This', 'Is', 'A', 'Test’]

Next.

● Inputs

● Files

● Importing and using existing libraries

	Slide 1: Introduction to Computing MCS1101B Lecture 2: Python
	Slide 2: Sets : A Collection type
	Slide 3: Sets (contd.)
	Slide 4: Dictionaries: A Mapping type
	Slide 5: Creating & Accessing Dictionaries
	Slide 6: Updating & Removing in Dictionaries
	Slide 7: Useful Accessor Methods
	Slide 8: Defining and Calling Functions in Python
	Slide 9: Functions without Returns
	Slide 10: Default Values for Arguments in Functions
	Slide 11: Keyword Arguments in Functions
	Slide 12: Functions are first-class objects
	Slide 13: Lambda Notation
	Slide 14: Example: Lambda Notation
	Slide 15: Example: composition
	Slide 16: Example: closure
	Slide 17: Logical Expressions
	Slide 18: Special Properties of and & or
	Slide 19: Conditional Expressions (kind of)
	Slide 20: Control of Flow: if Statements
	Slide 21: Control of Flow: while Loops
	Slide 22: Python's higher-order functions
	Slide 23: List Comprehensions
	Slide 24: List Comprehensions (contd.)
	Slide 25: List Comprehensions (contd.)
	Slide 26: List Comprehensions (contd.)
	Slide 27: For Loops / List Comprehensions
	Slide 28: For loops & the range() function
	Slide 29: A Note on Multiple Assignments
	Slide 30: String Operations and Formatting
	Slide 31: String operations: Join and Split
	Slide 32: Next.

