Introduction to Computing

MCS1101B
Lecture 2: Python

Sets : A Collection type

® Unordered list of unigue immutable elements >>> basket = {'apple', 'orange',
® An empty set can be created using a ‘apple’, 'pear', 'orange', 'banana'}
call to set ()

note that duplicates have been removed
>>> print (basket)

{'orange', 'banana', 'pear', 'apple'}

® A new set can ne created from any sequence
types by the function set ()

>>> a = set

) —=> set() /null set fast membership testing

(
>>> = 10,10, 20, 40, --> {10,20, 40,60 .
b = set([10,10,20 Jp BOL) L } >>> 'orange' in basket
>>> ¢ = set(('1','2','a")) -——> {'1', '2', 'a'}
>>> d = set ('abracadabra') -—-> 2?72 Lo

>>> 'crabgrass' in basket

False

Sets (contd.)

>>> a =
set ('abracadabra')

>>> a - b # in a but not in b Elements are added as:
{'r', 'd', lbl}

1 v
>>> b = set('alacazam') >>> a.add('z")
>>> a
55 8 # undoue letters >>> a | b # in a or b or both {*a', 'r', 'br, tcr, g,
in a {'a'['C', 'rl’ 'd'['b'[|m|, 'Z'}
{la|, lrl, lb', 'C', ld'} 'Z', 'l'}
>>> b # unique
letters inb sus 0 g B # in both a and b Elements are removed as:
{a/ l/ c 'y, zZ ", m} {'a’, 'C'} >>> a.remove(lrl)
>>> a
>>> a ~ b #in a or b but {'a', 'b', 'c¢', 'd', 'z'}

not both

{'r'[ldl, 'bl, |m|, 'ZI 'l'}

Dictionaries: A Mapping type

e Dictionaries store a mapping between a set of keys and a set of

values
o Keys can be any immutable type (why only immutable?)
o Values can be any type
o A single dictionary can store values of different types

e You can define, modify, view, lookup or delete the key-value pairs
In the dictionary

Python's dictionaries are also known as hash tables and associative arrays

Creating & Accessing Dictionaries

Create an empty dictionary

>>> dl = {}

Create a dictionary with initial values

>>>d={"user':'bozo', 'pswd'

11234}

>>> d['user']
'bozo'

>>> d['pswd']
123

>>> d['bozo']

Traceback (innermost last):
File '<interactive
input>' line 1, in °?

KeyError: bozo

Updating & Removing in Dictionaries

>>> d = {'user':'bozo', 'pswd':1234}
>>> d['user'] = 'clown'

>>> d

{'user':'clown', 'pswd':1234}

Keys must be unique

Assigning to an existing key replaces its value
>>> d['id'] = 45

>>> d

{'user':'clown','id':45, 'pswd':1234}

Dictionaries are unordered
New entries can appear anywhere in output
Dictionaries work by hashing

Remove the entry for 'user’

>>> del d['user']

>>> d

{'"pswd':1234, 'id':45}

Remove all entries in the dictionary
>>> d.clear ()

Side note: del works on lists, too
>>> a=[1,2,3]

>>> del al[l]

>>> g

[1,3]

Useful Accessor Methods
>>> d = {'user':'bozo', 'pswd':1234, 'id':45}

>>> d.keys () # List of keys, VERY useful
['user', 'pswd', 'id']

>>> d.values () # List of values
['bozo', 1234, 34]

>>> d.items () # List of item tuples
[('user', 'bozo'), ('pswd',1234), ('id',645)]

Defining and Calling Functions in Python

The syntax for a function definition is:
>>> def myfun (x,

V) :

return x *

y >>> def myfun2() :
print ("hello")

The syntax for the function (defined

above) call is:

>>> myfun (3,
12

>>> myfun?2 ()
'hello!

4)

Functions in python are defined using
the keyword def

You can give any name to the function
and it must always be unique within
your program

The parameters are optional (or as per
your requirements)

Parameter types are automatically
assigned based on the values passed
during function calls

Returns from a fucntion is optional too

Functions without Returns

All functions in Python have a return value,
Even if no return line inside the code

Functions without a return line, returns the special value None
e None is a special constant in the language

e None is used like NULL or void in C language

e None is also logically equivalent to False

The interpreter doesn't print None

Default Values for Arguments in Functions

You can provide
default values for a
function's
arguments

These arguments
are optional when
the function is called

>>> def myfun (b, c=3,
return b + c

>>>
>>>
>>>
>>>
>>>
>>>

myfun

myfun

myfun

(5
(5
myfun (5
(5
myfun (5

(5

myfun

3,"hello™)
, 3)

)

4)

, "HiM)

, d="Hi")

d="hello") :

returns
returns
returns

W OGO O OO

returns
returns error

returns 8

Keyword Arguments in Functions

You can call a function
with some or all of its
arguments out of order

as long as you specify their
names

You can also just use
keywords for a final
subset of the arguments.

>>> def myfun(a, b, c):
return a-b
>>> myfun(2, 1, 43)
1

>>> myfun (c=43, b=1, a=2)
1
>>> myfun (2, c=43, b=1)

1
>>> myfun (c=43, 2, b=1)

SRE

Functions are first-class objects

Functionscanbe usedas >>> def square (x):

any other datatype, e.g.,

e Arguments to function

e Returnvalues of
functions

e Assignedto variables

e Parts of tuples, lists, etc

return x*x

>>> def applier (g, Xx):

return g(x)

>>> applier (square, 7)
49

Lambda Notation

Python uses a >>> def applier (q, x):

lambda notation to create
. return g(x)
anonymous functions

Python supports functional >>> applier(lambda z: z * 4, 7)
programming idioms, 28

including closures and

continuation

Example: Lambda Notation

>>> f = lambda x,y : 2 * x + y >>> £(3, 4)
>>> f 10
<function <lambda> at 0x87d30> :ii 7, 1)
>>> v = lambda x: X*X >>> v (10)
>>> Vv 27?7
<function <lambda> at 0x87df0> i;;ogx

>>> vx = (lambda x: x*x) (100)

Example: composition

>>> def square (x): >>> quad (5)
return x*x 625

>>> def twice (f) :
return lambda x: f£(f (x))

| Explanation:
o2 tw%ce , square (square (5)= 27?27
<function twice at 0x87db0>
>>> quad = twice (square)
>>> quad

<function <lambda> at 0x87d30>

Example: closure

>>> def counter (start=0,

X = [start]
def inc():
x[0]

return x[0]

return

+= step

inc

step=1) :

>>> ¢l =
>>> c2 =
>>> ¢l ()

>>> ¢l ()
2

>>> ¢l ()
Guess ?7?°7
>>> c2 ()
90

>>> c2 ()

Guess 2?27?27

counter ()

counter (100,

-10)

Logical Expressions

® True and False are constants in Python.
® Other values equivalent to True and False:
o False: zero, None, empty container

or object
o True: non-zero numbers, non-empty
objects
® Comparison operators: ==, !=, <, <=, etc.

o Xand Y have same value: X ==
o Compare with X is Y:
m Xand Y are two variables that
refer to the identical same
object.

e You can also combine Boolean

expressions.

o Trueifais Trueand b is True: a
o Trueifais Trueorbis True: a
o Trueif ais False: a

Use parentheses as needed to
disambiguate complex Boolean
expressions.

b

b

Special Properties of and & or

e Actually and and or don't return True or False but value of one of their

sub-expressions, which may be a non-Boolean value
o X Y Z
o If all are true, returns value of Z

e Otherwise, returns value of first false sub-expression
o X Y Z
o If all are false, returns value of Z

e Otherwise, returns value of first true sub-expression
e and & or use lazy evaluation, so no further expressions are evaluated

Conditional Expressions (kind of)

x = true value 1f condition else false value

Uses lazy evaluation:

First, condition is evaluated
If True, true value Is evaluated and returned
If False, false value is evaluated and returned

Standard use:

x = (true value 1f condition else false value)

Control of Flow: If Statements

x == 3: e Any number of elif keyword
("X equals 3.") can be used, same as else
X == 2: if in C language
("X equals 2.")
e Make sure the indentation
("X equals something else.") for if-elif-else remains the
("This is outside the '"if'.") same — see the example

on the left

Control of Flow: while Loops

x =3 ® You can use the keyword break
x < 5 | | inside a loop to leave the while
(x, "still in the loop") loop entirely.
x =x + 1 -
_ ® You can use the keyword continue
Outputs: . :
3 still in the loop Inside a loop to stop processing the
4 still in the loop current iteration of the loop and to

immediately go on to the next one.

x < 5:
(x, "still in the loop") Works the same as C Language

Outputs:

Python's higher-order functions

>>> def square(x) :

return x*x
>>> def even(x):

return 0 == s 2
>>> map (square, range(10,20))
[100, 121, 144, 169, 196, 225,
256, 289, 324, 361]
>>> filter (even, range (10,20))
[10, 12, 14, 16, 18]
>>> map (square, filter (even,
range (10, 20)))
[100, 144, 196, 256, 324]

e Python supports higher-order
functions that operate on lists
similar to Scheme's

e But many Python programmers
prefer to use list
comprehensions, instead

List Comprehensions

>>>vals = [10,15,20,25]
>>>[x-10 for x in vals]
[0,5,10,15]

Another variation with condition

>>>[x for x in vals 1f x%2==0]

[10,20]

You can easily complicate your life as:
>>>x for x in [y-10 for y in vals] if
xX%2==0]

[0,10]

Why "comprehension"? The term
Is borrowed from math's set
comprehension notation for
defining sets in terms of other sets
A powerful and popular feature in
Python

Generate a new list by applying a
function to every member of an
original list

Python's notation:

[expression for name in list |

List Comprehensions (contd.)

e If list contains elements of different
types, then expression must operate
correctly on the types of all of list
members.

e If the elements of list are other
containers, then the name can consist
of a container of names that match the
type and "shape" of the list members.

('b', 2),
in 11i]

>>> 1i = [('a', 1), ('‘c'y 7)1
>>> [n * 3 for (x, n)

[3, 6, 21]

expression can also contain user-
defined functions.

>>> def subtract(a, b):

return a — b
>>> oplist = [(6, 3), (1, 7), (5, 5)]
>>> [subtract(y, x) for (x, y) in
oplist]
[-3, 6, 0]

List Comprehensions (contd.)

List comprehensions can be viewed as syntactic sugar for e Filter determines whether
atypical higher-order functions expression is performed on each
member of the list.

[expression for name in list]
map(lambda name: expression, list)

® [or each element of list, checks if

[2*+1 for X in [10,20,30]] it satisfies the filter condition.
map(lambda x: 2*x+1, [10, 20, 30])

e |If the filter condition returns

>>> 1i = [3, 6, 2, 7, 1, 9]] .
>>> [elem*2 for elem in 1li if elem > 4] False, that element is omitted
[12, 14, 18] from the list before the list
Only 6, 7, and 9 satisfy the filter condition comprehension is evaluated.

So,only 12, 14, and 18 are produce.

List Comprehensions (contd.)

Including an if clause begins to show the benefits of the
sweetened form

[expressionforname in list if filt]
map(lambda name . expression, filter(filt, list))

[2*x+1 for x in [10,20,30]if x>0]
map(lambda x: 2*x+1, filter(lambda x: x >0, [10, 20, 30])

[elfornlin[elfornllist]]
map(lambdanl: el, map(lambdan2: e2,list))

[2*x+1 for x in [y*y fory in [10, 20, 30]]]
map(lambda x: 2*x+1, map(lambda y: y*y, [10, 20, 30]))

Since list comprehensionstake a list
as input and produce a list as output, they
are easily nested

>>> 11 = [3, 2, 4, 1]
>>> [elem*2 for elem in

[item+]l for item in 1i]
[8, 6, 10, 4]
The inner comprehension produces:

[4, 3,5, 2]
So, the outer one produces:[8, 6, 10, 4]

For Loops / List Comprehensions

® Python's list comprehensions provide a natural ® If <collection> is a list or a tuple, then
idiom that usually requires a for-loop in other the loop steps through each element
programming languages. of the sequence
O As aresult, Python code uses many fewer for-loops ® |f <collection> is a string, then the

O Nevertheless, it's important to learn about for-loops
e A for-loop steps through each of the items in a
collection type, or any other type of object which is

loop steps through each character of

the string
® <ijtem> can be more than a single

"lterable" ,
: : : variable name, e.g.,
for <item> in <collection>;
<statements> for (x,v) in [(a,1), (b,2),(c,3)]:
Example: print (x)

for ch in "Hello World":
print (ch)

For loops & the range() function

® Since a variable often ranges over some >>>ages = {"Sam" : 4, "Mary": 3, "Bill" : 2 }
sequence of numbers, the range() function >>>ages
returns a list of numbers from O up to but not {Bill: 2, 'Mary": 3, 'Sam": 4}
including the number we pass to it.

e range(5) returns [0,1,2,3,4] FER O A 1 S0
® So we could say: print name, ages[name]

: Bill 2
for x 1n range (D) :
nt (x) Mary 3
rin
e Sam 4

(There are more complex forms of range() that
provide richer functionality...)

A Note on Multiple Assignments

We've seen multiple assignment before:
>>> X, y=2,3

e You can also do it with sequences.
e The type and "shape" just has to match.

>>> (X, Y, (W, 2)) = (2, 3, (4,5))
>>> [x, y] = [4, 5]

String Operations and Formatting

® A number of methods for the string class
perform useful formatting operations:

>>> "hello" .upper ()

"HELLO'

® Check the Python documentation for many
other handy string operations.

® The builtin str() function can convert an
instance of any data type into a string.

>>> “Hello ” + str(2)

“Hello 2”

Formatting a string in python. If can be done in two

ways.
>>> X = w abcll
>>> y = 34

The first way is the default python printing style.
>>> f"{x} xyz {y}" % (%, y)

'abc xyz 34"

The second way works like c. You can use

this method for forcing the outputs to be as
desired.

>>> "%s xyz d"
'abc xyz 34"

o\°

(x, V)

>>> "%s xyz Sf" % (x, V)
'abc xyz 34.000000"

String operations: Join and Split

Jointurns a list of strings into one string
<separator_string>.join(<some_list>)

>>> ";".join([HabC"’ "defH, "ghi"])
"abc;def;ghi"

Splitturns one string into a list of strings
<some_string>.split(<separator_string>)

>>> "abc;def;ghi".split(";")
["abc" , "def" , "ghi"]

Splitand join can be usedin a list comprehension
in the following Python idiom:

>>> " " _Join([s.capitalize() for s
in "this is a test ".split()])
'"This Is A Test?

For clarification:

>>> "this 1s a test" .split()
['this',
>>> [s.capitalize() for s in "this is
a test" .split ()]

['This', 'Is', 'A', 'Test’]

'is', 'a', 'test']

Next.

e Inputs
o Files
e Importing and using existing libraries

	Slide 1: Introduction to Computing MCS1101B Lecture 2: Python
	Slide 2: Sets : A Collection type
	Slide 3: Sets (contd.)
	Slide 4: Dictionaries: A Mapping type
	Slide 5: Creating & Accessing Dictionaries
	Slide 6: Updating & Removing in Dictionaries
	Slide 7: Useful Accessor Methods
	Slide 8: Defining and Calling Functions in Python
	Slide 9: Functions without Returns
	Slide 10: Default Values for Arguments in Functions
	Slide 11: Keyword Arguments in Functions
	Slide 12: Functions are first-class objects
	Slide 13: Lambda Notation
	Slide 14: Example: Lambda Notation
	Slide 15: Example: composition
	Slide 16: Example: closure
	Slide 17: Logical Expressions
	Slide 18: Special Properties of and & or
	Slide 19: Conditional Expressions (kind of)
	Slide 20: Control of Flow: if Statements
	Slide 21: Control of Flow: while Loops
	Slide 22: Python's higher-order functions
	Slide 23: List Comprehensions
	Slide 24: List Comprehensions (contd.)
	Slide 25: List Comprehensions (contd.)
	Slide 26: List Comprehensions (contd.)
	Slide 27: For Loops / List Comprehensions
	Slide 28: For loops & the range() function
	Slide 29: A Note on Multiple Assignments
	Slide 30: String Operations and Formatting
	Slide 31: String operations: Join and Split
	Slide 32: Next.

