
Introduction to Computing
MCS1101B

Lecture 1: Python

Preface

Download Python from

http://python.org/download/

IDLE Development Environment

Interactive interface with a read-eval-print loop (REPL)

Call python program via the python interpreter

python fact.py

def fact(x):

"""Returns the factorial

of its argument, assumed

to be a posint"""

if x == 0:

return 1

return x * fact(x - 1)

print ('N fact(N)')

print ("---------")

for n in range(10):

print (n, fact(n))

All Python Documentations

https://docs.python.org/3/

Python Tutorial

https://docs.python.org/3/tutorial/index.html

fact.py

http://python.org/download/
https://docs.python.org/3/
https://docs.python.org/3/tutorial/index.html

Python Scripts

● When you call a python program from the command line the

interpreter evaluates each expression in the file

● Familiar mechanisms are used to provide command line arguments

and/or redirect input and output

● Python also has mechanisms to allow a python program to act both

as a script and as a module to be imported and used by another

python program

Example of a Script

x = 34 - 23 # A comment.

y = "Hello" # Another comment.

z = 3.45

if z == 3.45 or y == "Hello":

x = x + 1

y = y + " World" # String concatenation

print (x)

print (y)

The Import System of Python

def fact1(n):

ans = 1

for i in range(2,n+1):

ans = ans * n

return ans

def fact2(n):

if n < 1:

return 1

else:

return n * fact2(n - 1)

>>> import ex

>>> ex.fact1(6)

720

>>> ex.fact2(200)

78865786736479050355236321393218507…00000

0L

>>> ex.fact1

<function fact1 at 0x902470>

>>> fact1

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

NameError: name 'fact1' is not defined

ex.py

Enough to Understand the Code

Indentation matters to code meaning

● Block structure indicated by indentation

First assignment to a variable creates it

● Variable types don’t need to be

declared.

● Python figures out the variable types on

its own.

Assignment is = and comparison is ==

For numbers + - * / % are as

expected

● Special use of + for string

concatenation and % for string

formatting (as in C’s printf)

Logical operators are words

(and, or, not) not symbols

● The basic printing command is

print

Whitespace

Whitespace is meaningful in

Python

>> especially indentation and

placement of newlines

Use a newline to end a line of

code

Use \ when must go to next line

prematurely

No braces {} to mark blocks of code,

need to use consistent indentation

instead

>> First line with less indentation is

outside of the block

>> First line with more indentation starts

a nested block

Colons start of a new block

>> function definitions, if clauses, etc.

Comments

is used for single line comments

""" is used for multiline comments

Can include a "documentation

string" as the first line of a new

function or class you define

Development environments,

debugger, and other tools use it:

it’s good style to include one

defition for the factorial function

def fact(n):

"""fact(n) assumes n is a positive

integer and returns facorial of

n."""

if n==1:

return 1

else:

n*fact(n-1)

Naming Rules

Names are case sensitive and

cannot start with a number

They can contain letters,

numbers, and underscores.

Valid name examples:

bob Bob _bob _2_bob_ bob_2

There are some reserved words :

and, assert, break, class, continue, def,

del, elif, else, except, exec, finally, for,

from, global, if, import, in, is, lambda,

not, or, pass, print, raise, return, try,

while

These shouldn't be used as names

Basic Datatypes

Integer (default for numbers)

z = 5 / 2

Answer 2.5, normal division

z = 5 // 2

Answer 2, integer division

Float

x = 3.456

There is to Char type in python

String
Can use "" or '' to specify
"abc"

'abc'

Unmatched " or ' can occur within the string:
"matt's"

'double quote symbol :"'

Use triple double-quotes for multi-line strings or
strings than contain both ' and " inside of
them: """a'b"c"""

Sequence Types

Tuple

(‘john’, 32, [15,16,17], (10,20))

● A simple immutable ordered

sequence of items

● Items can be of mixed types,

including collection types

String

“John Smith”

● Immutable

● Conceptually very much like a tuple

List

[1, 2, ‘john’, (‘up’, ‘down’)]

● Mutable ordered sequence of items

● Can contain mixed types

Assignment

You can assign to multiple names at the

same time
>>> x, y = 2, 3

>>> x

2

>>> y

3

This makes it easy to swap values
>>> x, y = y, x

Assignments can be chained
>>> a = b = x = 2

Binding a variable in Python means setting
a name to hold some data value

Assignment always creates references, not
copies
● For immutable types, it's does not

matter
● For mutable types, it can create

unexpected behaviors

You create a name the first time it appears on
the left side of an assignment expression:
>>> x = 3

Names in Python do not have an intrinsic type

data/objects have types

Python determines the type of the reference automatically

based on what data is assigned to it

Defining Sequence Types

All three sequence types (tuples,

strings, and lists) share much of

the same syntax and functionality.

Key difference:

●Tuples and strings are immutable

●Lists are mutable

● Define tuples using parentheses and

commas

>>> tu = (23, 'abc', 4.56, (2,3))

● Define lists are using square brackets and

commas

>>> li = ["abc", 34, 4.34, (3,1,2)]

● Define strings using quotes (", ', or """)

>>> st = "Hello World"

>>> st = 'Hello World’

>>> st = """This is a multi-line

string that

uses triple

quotes."""

Accessing Sequence Types 1

Access individual

members of a tuple,

list, or string using

square bracket

“array” notation

Note that all are 0-

based…

>>> tu = (23, 'abc', 4.56, (2,3), ‘def’)

>>> tu[1] # Second item in the tuple.

'abc'

>>> li = ["abc", 34, 4.34, 23]

>>> li[1] # Second item in the list.

34

>>> st = "Hello World"

>>> st[1] # Second character in string.

'e'

Accessing Sequence Types 2

Access individual

members of a tuple,

list, or string using

square bracket

“array” notation

from the right-end

using negative

indexes

>>> x = (23, ‘abc’, 4.56, (2,3), ‘def’)

Positive index: count from the left, starting with 0

>>> x[1]

‘abc’

Negative index: count from right, starting with –1

>>> x[-3]

4.56

Slicing: return copy of a subset

Return a copy of the container with a
subset of the original members.

Start copying at the first index, and stop
copying before second.
>>> t[1:4]

(‘abc’, 4.56, (2,3))

Negative indices count from end
>>> t[1:-1]

(‘abc’, 4.56, (2,3))

Omit first index to make copy starting

from beginning of the container

>>> t[:2]

(23, 'abc')

Omit second index to make copy starting

at first index and going to end

>>> t[2:]

(4.56, (2,3), 'def')

>>> t = (23, 'abc', 4.56, (2,3), 'def')

Slicing: return a copy of a subset

[:] makes a copy of an entire sequence

>>> t[:]

(23, 'abc', 4.56, (2,3), 'def')

Note the difference between these two lines

for mutable sequences

>>> x2 = x1 #Both refer to 1 ref,

#changing one affects both

>>> x2 = x1[:]

#Independent copies, two refs

Test your understanding:
>>> t[-1:-3] #??

>>> t[-1:2] #??

>>> t[:-3] #??

>>> t[1:4:2] #??

>>> x1=[1,2,3]

>>> x2=x1 #x2=?

>>> x2[1] = 100

>>> x1 #??

>>> x3 = x1[:] #x3=?

>>> x3[2] = 200

>>> x1 #??

>>> t = (23, 'abc', 4.56, (2,3), 'def')

The ‘in’ Operator

Boolean test whether a value is

inside a container:

>>> t = [1, 2, 4, 5]

>>> 3 in t

False

>>> 4 in t

True

>>> 4 not in t

False

For strings, tests for substrings

>>> a = 'abcde'

>>> 'c' in a

True

>>> 'cd' in a

True

>>> 'ac' in a

False

The + Operator and The * Operator

The + operator produces a new
tuple, list, or string whose value is
the concatenation of its arguments.

>>> (1, 2, 3) + (4, 5, 6)

(1, 2, 3, 4, 5, 6)

>>> [1, 2, 3] + [4, 5, 6]

[1, 2, 3, 4, 5, 6]

>>> "Hello" + " " + "World"

'Hello World'

The * operator produces a new tuple, list,
or string that “repeats” the original content.

>>> (1, 2, 3) * 3

(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> [1, 2, 3] * 3

[1, 2, 3, 1, 2, 3, 1, 2, 3]

>>> “Hello” * 3

‘HelloHelloHello’

Mutability : Tuples vs. Lists

>>> x = [‘abc’, 23, 4.34, 23]

>>> x[1] = 45

>>> x

[‘abc’, 45, 4.34, 23]

We can change lists in place.

The name x still points to the same

memory reference when we’re done.

>>> t = (23, ‘abc’, 4.56, (2,3), ‘def’)

>>> t[2] = 3.14

Traceback (most recent call last):

File "<pyshell#75>", line 1, in -toplevel-

tu[2] = 3.14

TypeError: object doesn't support item

assignment

You can’t change a tuple.

You can make a fresh tuple and assign its reference to a

previously used name.

>>> t = (23, 'abc', 3.14, (2,3), 'def')

Operations on Lists

>>> x = [1, 11, 3, 4, 5]

>>> x.append('a') # Note

the method syntax

>>> x

[1, 11, 3, 4, 5, 'a']

>>> x.insert(2, 'i')

>>>x

[1, 11, 'i', 3, 4, 5, 'a']

The extend method vs +
+ creates a fresh list with a new memory ref
extend operates on list x in place.

>>> x.extend([9, 8, 7])

>>> x

[1, 2, 'i', 3, 4, 5, 'a', 9, 8, 7]

Potentially confusing:
extend takes a list as an argument.
append takes a singleton as an argument.
>>> x.append([10, 11, 12])

>>> x

[1, 2, 'i', 3, 4, 5, 'a', 9, 8, 7, [10, 11,

12]]

More on Tuples and Lists

The comma is the tuple creation operator, not parens

>>> 1,

(1,)

Python shows parens for clarity (best practice)

>>> (1,)

(1,)

Don't forget the comma!

>>> (1)

1

Trailing comma only required for singletons others

Empty tuples have a special syntactic form

>>> () #you can do the same using tuple()

()

Lists slower but more powerful than tuples

Lists can be modified, and they have lots of

handy operations and methods

Tuples are immutable and have fewer

features

To convert between tuples and lists use the

list() and tuple() functions:

li = list(tu)

tu = tuple(li)

Comparison of Python with C (in terms of speed)

import sys

NUMBER = int(sys.argv[1])

s = 0

for i in range(NUMBER):

s += 1

#include <stdio.h>

#include <stdlib.h>

int main(int argc, char **argv) {

int NUMBER, i, s = 0;

NUMBER = atoi(argv[1]);

for (i = ; i < NUMBER; ++i) s += 1;

return 0;

}

gcc c_loop.c -o c_loop

time ./c_loop 450000000

real 0m1.032s
user 0m1.008s

sys 0m0.008s

gcc -O3 c_loop.c -o c_loop

time ./c_loop 450000000

real 0m0.001s
user 0m0.000s

sys 0m0.000s

time python python_loop.py 10000000

real 0m1.044s

user 0m1.004s

sys 0m0.004s

Next.

● You will learn about sets and dictionaries

● You will learn about python functions

● You will learn about file handling

● You will learn more about the import system

	Slide 1: Introduction to Computing MCS1101B Lecture 1: Python
	Slide 2: Preface
	Slide 3: Python Scripts
	Slide 4: Example of a Script
	Slide 5: The Import System of Python
	Slide 6: Enough to Understand the Code
	Slide 7: Whitespace
	Slide 8: Comments
	Slide 9: Naming Rules
	Slide 10: Basic Datatypes
	Slide 11: Sequence Types
	Slide 12: Assignment
	Slide 13: Defining Sequence Types
	Slide 14: Accessing Sequence Types 1
	Slide 15: Accessing Sequence Types 2
	Slide 16: Slicing: return copy of a subset
	Slide 17: Slicing: return a copy of a subset
	Slide 18: The ‘in’ Operator
	Slide 19: The + Operator and The * Operator
	Slide 20: Mutability : Tuples vs. Lists
	Slide 21: Operations on Lists
	Slide 22: More on Tuples and Lists
	Slide 23: Comparison of Python with C (in terms of speed)
	Slide 24: Next.

