Introduction to Computing

MCS1101B
Lecture 8

User Defined Datatypes

e Sometimes basic data-types are not

sufficient for describing problems
conveniently, e.g., 2D

coordinates, complex numbers,
student information, etc.

You can define your own data-type
as per your requirements

You need to use the keyword struct
for this purpose

e structis short for structure

struct new_type {
member variable 1:

member variable n;
k
struct new_type becomes your new
user-defined data-type
member(s) can be any existing
data-types or user-defined types,
such as, int, float, int*, char[10],
struct another_type, etc.

Structures

Example: e struct complex n1={1,2}, n2={2,3}, n3;
re_presentmg a complexnumber o Declare and initialize similar to any type
= ar 137 e n3 = n2; //copies the value of n2 into n3
struct complex{ e Normal operations does not work (why?), such as
float x; o nl+n2,nl-n2
floaty; o nl==n2
5 To achieve these, you need to write your own functions
struct complexn; struct complex add (struct complex num1, struct complex num2) {
n.x =1.0; struct complex sum;
ny =2.0; sum.x = numil.x + num2.x;
// This™ can representthe complex number sum.y = numl.y + num2.y;
1.0 +1i 2.0 as printed below return sum;
printf ("%f + i %f", n.x, n.y); }

n3 = add (n1, n2); //function call for addition

Structures (contd.)

e Normal operations does not add is a function that takes two complex numbers
work as input and returns their complex sum as output
o nl+n2, n1-n2
o nl==n2 struct complex
e You need to write your own add (struct complex numl, struct complex num2)
functions and define your own {
operations struct complex sum;
o Example code for addition of two sum.x = numl.x + numz.x;
complex numbers is given = sum.y = numly + num2.y;
o Similarly you can write your own return sum;
subtraction, multiplication, equality, }

conjugate, etc. n3 = add (nl1, n2); //function call for addition

Renaming Datatypes

You can choose to rename (create an Another way of Writing typedef
alias) for any datatype using a keyword

called typedef typedef struct complex{
-- It is particularly convenient for float x:
structures float y:

typedef struct complex Q; _
1Q;

Example: Then, we could write code as follows

You can declare variables as follows: Q nl, n2;

Use in functions:

Qadd (Qnl,Qn2) {<<function definition>>}

Size of structure

Size of a structure variable is (ideally) the sum of
the sizes of all its member’s sizes, so
sizeof (Q) = sizeof (float) + sizeof (float)

But this is not always the case in practice:

structure padding -- extra memory added for
convenience

#pragmapack(l) -- exact size memory as shown
above

Consider the follwing structure

typedef struct a_type{
char x;
inty;

tatype;

sizeof (atype) theoretically should be
sizeof (char) + sizeof (int) = 1+4 =5

But if you run the code, it gives 8 and not 5 due to
structure padding (adds extra memory to char type)

But if you use #pragma pack(1) atthe start of your
program, then you can force the size to be 5

Structures and pointers

e Since structures are just another Accessing the members using
datatype - it is possible to create pointers variables
pointers of it's type
e struct complex *ptr; = is able to Q *ptr; Q v ={10, 20};
contain the address of structure ptr = &v;
variable o *ptr.real = vviII. not work
o (*ptr).real = will work

o We could also write Q *ptr;

—since we renamed it as Q Alternatively the arrow operator (->) can
e So, sizeof(ptr) = ? be used to access members

printf ("%f", ptr->real);

Structures examples

Store studentrecord with name, roll number,
height, weight, DoB, DoJ

e How do you store information about 100
students?

e \What happensif one or more studentjoins
later on?

e What happensif you do not know the
number of students beforehand?

/I A possible implementation
typedef struct _student info{
char *name;
char DoB[10], DoJ[10];
int roll_no;
float height, weight;
}student;

/I A single student info
student stud1,

// 100 students info
student stud_arr[100];

Array and Structure

Since structures are just another e arrfi].x, arr[i].y < to access member
datatype - it is possible to create an variables

array for the same e arrfi] is the same as *(arr + i)

e i.e.arr+iis apointer to arrfi]

Q arr[3]; = equivalent to 5 Q variables So, (arr+i)->x will also work

o Variables are accessed using

iIndexes e.qg. arr[1], arr[3], etc.
o Can also be accessed using — okay, but how to create array when

pointer arithmetic «— remember size is not known beforehand?
this?

Dynamic Memory allocation (DMA)

This is another way to allocate ® We need a new include library stdlib.h
memory for variables ® We will use two functions from this library
o malloc - memory allocator

It can allocate memory to a variable
o free- frees some allocated memory

during the runtime of the program

o S0, Yyou can read/scan the number of Prototype: VOId* malloc (int size)
elements fromthe user

o Thenall n mem :
en allocate necessary memory ® |tallocates a memory space of the given

It works for allocating memory for size
o A single variable of any type ® returns an address of the memory, i.e., a
o An array of any type pointer but without any specific type

O Hence a void*
® You can typecast the pointer to your need

DMA (contd.)

To create a int variable using malloc, declare a int
pointer variable
int *ptr;

Allocate memory using malloc (two ways)
ptr = (int*) malloc (sizeof(int));// explicit typecast
ptr = malloc (sizeof(int)); /l implicit typecast

Access the values using *ptr
*ptr = 10;
printf (“%d”, *ptr); // — prints 10

Caution: if you try to access *ptr
before allocating memory, the
behaviour is undefined

For the structure Q, we can do the
same as follows

Q *ptr;

ptr = (Q*) malloc (sizeof(Q));

Access: ptr->x, ptr->y

Array and DMA

e To create an array using DMA

e We need to specify the total
memory size (in bytes) required for
the array

e.g., to get an integer array of size 10,
we can write the following code

int *arr;
arr = (int*) malloc (sizeof(int) * 10);

Accessas artfi] or *(arr+i)

If you need to take the size from the user,
you can do the following:

int n; int *ptr;
scanf (“%d”, &n);
ptr = (int*) malloc (sizeof(int) * n);

To release an allocated memory, you can

write
free (ptr);
m Make sure the ptris a valid one
m Otherwise, it may result in error

Adding an element in array

e Array has a fixed size
o Beitallocated using DMA or statically

e Assume you have an array of 10

elements
o You have inserted 5 elements fromO to 4
indexes, then you want to insert another
elementin position 2
o You have already inserted 10 elements, then
you want to add another element

A better solution for such issues:
Linked list

o A cleversolution using
structures, DMA and pointers
o lItrequires more space than an
array to store the same amount
of data
It's a beautiful testimony to the powerof C
language
o Iftime permits, we will talk about
it at the end of this course

Storage issues

e Single variable
o Can only store a value
e Array of variables

o Can store multiple values, but size
allocation needs to be known first

e Array using DMA - can be allocated

later, based on requirements

o But insertion, deletion, resizing is still an
issue

e Linked list is used to alleviate such

problems

© However, it uses more memory compared
to arrays to store the same information

«— All of these solution works only until

program is running, once it is closed all

data are lost.

e The solution to this problemis
usage of persistent storage (you
know these as pen drive, ssd, hard
disk, etc.)

e But how do you write in such
devices?

— We create files.

File

e Stored as sequence of bytes,

logically contiguous
o May not be physically contiguous on
disk, but you don'’t need to worry about
that

e Two types of files
o Text- can only contain ASCII
characters
o Binary - can contain non-ASCI|
characters
m Example:image, video,
executable, audio, etc.

Basic operations on file (stdio.h)

O

o
(@)
(@)

Open
Read
Write
Close

A file needs to be open before you
can do read or write operations
Once the works are done on file
you need to close the file

In case, close is not done, some/all
contents of the file may be lost

File (contd.)

e FILE*Is a datatype used to
represent a pointer to a file
e To open a file we use a function

called fopen
o Ittakes two parameters
m Name of the file
m Mode inwhich it is to be opened
o Itreturns a pointer to the file if the file is
opened successfully, otherwise it
returns NULL

Example of a file creation for writing

FILE *fp;

char filenamel[] = “a_file.dat”

fp = fopen (filename, “w");

if (fp == NULL)

{
printf (“unable to create file”);
[* DO SOMETHING */

}
[* WRITE SOMETHING IN FILE */

fclose (fp);

File (contd.)

Modes of opening a file

. (13 r” _

(@)
(@)

. “W”

O

O

O

Opens a file for reading

Error if the file does not already exist
“r+” allows write also

— Opens a file for writing

If file does not already exist, it creates a
new file

If file already exists, all the previous
contents of the file will be overwritten
“‘w+” allows read also

e “a”— Opens a file for appending
(write at the end of the file)

O

“a+” allows read also

When error occurs, e.g. file failed to
open, the rest of your program may

not work properly

o Insuchcase, you may want to exit the
program on emergency basis

o The function exit() from stdlib.h allows
you to do so

o Ifcan be called from anywhere in the c
program and it will terminate the
program at once

File (contd.)

FILE *fp;

char filename[] = “a_file.dat”

fp = fopen (filename, “wW");

if (fp == NULL)

{
printf (“unable to create file”);
[* DO SOMETHING */
exit(-1);

}

[* WRITE SOMETHING IN FILE */

fclose (fp);

You can pass any integer in the exit
function
This value will be returned as the

output of the program
o Recallthat a c functionis a collection of
functions and functions must return
something
o A negative value (by convention)is
treated as some error has happened

Next Class...

	Slide 1: Introduction to Computing MCS1101B Lecture 8
	Slide 2: User Defined Datatypes
	Slide 3: Structures
	Slide 4: Structures (contd.)
	Slide 5: Renaming Datatypes
	Slide 6: Size of structure
	Slide 7: Structures and pointers
	Slide 8: Structures examples
	Slide 9: Array and Structure
	Slide 10: Dynamic Memory allocation (DMA)
	Slide 11: DMA (contd.)
	Slide 12: Array and DMA
	Slide 13: Adding an element in array
	Slide 14: Storage issues
	Slide 15: File
	Slide 16: File (contd.)
	Slide 17: File (contd.)
	Slide 18: File (contd.)
	Slide 19: Next Class…

