
Introduction to Computing
MCS1101B

Lecture 7

Recap

● Pointers
○ Value

○ Name

○ Address

○ Size and type of pointers

● Array and pointers

● Function and pointers

● Functions calling functions

● Recursion

● Passing Array to functions
○ Problems with sending size

● Character Array

● Strings

Character Arrays and Strings

● Character arrays are very useful in storing data
○ Even though they are basically integers underlying, but the range of the values are limited

○ This allows to have some additional functionalities (for convenience, of course)

○ Strings are declared and defined the same way as any other array types

○ Since the values are in range of 0-127 (sometimes more, but still, limited), we have the

convenience make some of the characters for special use such as:

■ newline(\n)

■ backspace (\b), etc.

○ In the case of character arrays we use a special character called the null character

■ Represented as ‘\0’ (backslash-zero)

■ Ascii value of this character is 0

■ It prints nothing on the computer screen

Character array and strings

● Character variable

○char ch1, ch2 = ‘a’;

● Character array

○ char ca1[10];

○ char ca2[3] = {‘S’,‘D’,‘B’};

○ char ca3[5] = {‘S’,‘D’,‘B’};

A string is a character array for which the last valid character is
the null character.
● char ca4[10] = {‘S’,‘o’,‘u’,‘m’,‘a’,‘d’,‘i’,‘p’,‘\0’};
● char ca5[10] = “Soumadip”;

○ Both the above statements are equivalent
○ This type of initialization makes sure that the null character is

automatically appended at the end

You can't do the following after declaration though
ca1 = "word1"; // not allowed – why?
ca4 = "word2"; // not allowed – what is the type of ca1 or ca4?

-- More on what can and can't be done, later

String is basically short for “a string of characters”

● A single character in C is written within single quotes e.g. ‘a’, ‘3’, ‘Z’, ‘%’, etc.
● A string is written in C within double quotes, e.g., “a_string”, “with spaces”, “and with $”,

etc.

Strings and scanf

● scanf also provides a shortcut for

strings format %s

○ scanf (“%s”, ch_arr); ⇒ this allows you to

read a string from user without spaces

○ scanf ("%[^ ^\n]%*c", ch_arr);

■ This is equivalent to %s; reads the

characters until space () or the newline

character (\n) is encountered

○ scanf ("%[^\n]%*c", ch_arr);

■ reads a string with spaces

until a newline(\n); so, it can

read strings with spaces

Note: All the method discussed

here will add a ‘\0’ to the end of the

scanned characters - making it a

string

String Operations

● Normal assignments do not work on

strings (or any arrays for that matter)

● You can define different operation

on strings by writing your own

functions
○ Compare two strings for equality

○ Copy one string to another

○ Concatenate two strings

○ Check if a input string is integer or float

● Alternatively, you can choose to
#include a new header file called
string.h and use built-in functions for
such operations

○ strlen

■ int strlen(const char *str)

○ strcmp
■ int strncmp(const char *str1, const

char *str2, int n)

○ strstr

■ char* strstr(const char *haystack,
const char *needle)

○ strcat

■ char* strcat(char *dest, const char

*src)

○ Check the link for more.

https://www.ibm.com/docs/en/i/7.4?topic=files-stringh

Preprocessors

● Preprocessor is not a part of the

compiler

● It is a step in the compilation

process

● a C Preprocessor is just a text

substitution tool

● It instructs the compiler to do

required pre-processing before the

actual compilation

● They are also known as macro

Examples:

● #inlcude <string.h>

● #define SIZE 10

● #define SQUARE(x) ((x)*(x))

● #ifdef <macro>.. #endif

● etc.

	Slide 1: Introduction to Computing MCS1101B Lecture 7
	Slide 2: Recap
	Slide 3: Character Arrays and Strings
	Slide 4: Character array and strings
	Slide 5: Strings and scanf
	Slide 6: String Operations
	Slide 7: Preprocessors

