Introduction to Computing

MCS1101B
Lecture 6

Recap

e Array e Some example codes using array
o Declaration o Print all elements of array
o Initialization o Scan elements into array
o Assignment o Find the minimum from array
o Accessing elements of array o Searchforakey elementin an array
e Pointers

o Another type of variable

o Can hold memoryaddress of some
variable

o The scanf case

Pointers (recap)

e <type>*<name>; = declaration syntax Inta=10; Int *ptr;
of pointer variable
printf ("“%d”, a); = 10
o Pointer variable value can be accessed printf (“%p”, &a); = address of a
using <name>
e Access the value at the stored address ptr = &&;
using *<name> = treat the value at the
stored location as the declared <type> printf (“%p”, ptr); =7
e Access the memory address of the printf (“%d”, *ptr); = ?
pointer variable using &<name> printf (“%p”, &ptr); =7

Functions and Pointers (refresher)

e Since variables passed to the So, Let’s recall Swap
functions are basically a copy
e Pointers to the variables are used void swap (int a, int b) void swap (int *a, int *b)

iInstead of a variable to pass the { {
reference to a variable - only when Int tmp; Int tmp;
required tmp = a; tmp = *a;
o Addressesofthe variable is copied a=b; *a=*b;
o Changes made by function are done to b =tmp; *b = tmp;
the memory address } }

o So when function exits, it only forgets
the memorylocation and not the
changes made ot that location

Array and Functions (refresher)

Array
int arr[8] = {12, 14,1, -2, 6, 91, 200, 10}

o Print all elements of an array in reverse
order

o Print elements of an array within a given
range e.g. 2-6

o Print all elements of an array that are
positive

o Print all elements of an array that are
even

Functions
<ret_type> <name> (param1, paramz, ...)

Write a function for the following function
definitions

f(x) =x2+ 10

g(x, y) = (X +y)?
factorial(n) = n!
permutations(n,r) = nPr
combinations(n,r) = nCr

O O O O O

o A function that returns the mean of all
elements in an array of integers

Array (contd.)

number of Accesselements using index

Array declaration syntax: e|ehments in E
' the arra ==
e.g ;SIZe> -) implies that the

&arr[0
Name of array [0] Data assignment examples:

Integer Consider
10 20 35 47 3 7 -10 100 sizeofint=4

array
[then

0 1 2 3 4 O 6 / sizeofarr = 4*8 = 32

1002 1006 100A 100E 1012 1016 101A 101E T
address

4098 4102 4106 4110 4114 4118 4122 4126

Passing Array to Functions

e Array is a memory block Example:
e Array variable is basically the first int A [10];

address of the entire memory block sizeof (A) = 10 * sizeof (int)
e The size of the block is known only Call func (A)

to the function the array is defined

In In the function func
e If you pass array to a function, only void func (int arr[])
the address of the memory block is {
copied, and nothing else sizeof (arr) = sizeof (int*)

}

Passing Array to Functions — Two ways

Assume sizeof(int) = 4 and sizeof (int*) = 8

int A [10];

sizeof (A) = 4*10 =40
e Call funcl(A)

® Call func2(A)

One way
e void funcl (int arr[])

{
}

sizeof (arr) = sizeof (int*)=8

Another way
e Vvoid func2 (int *arr)
{
sizeof (arr) = Also sizeof (int*)=8

}

So, to pass an array properly you need
to pass the size (desired) of the array as
well.
e void f (int arrf[], int n)
e void f2 (int *arr, int n)

Functions Calling Functions (type 1)

o intfl(){..} int factorial (n)

| {
0 ey int i, result = 1;

{- for (i=1; i<=n; i++)

f1(); result *=1;

) return result;

o intf3(){..f2(): ...})
permutations(n,r) = nPr // Can be written as follows:

o intf4(){...f3(); ...} = factorial(n)/factorial(n-r)

o intf5(){..f2(); ...

—

combinations(n,r) = nCr
= ?

Functions Calling Functions (type 2)

int f6() {... f7(); ...} Factorial definition (from math)
int f7() {... 6(); ...} f(n) = n*f(n-1) //recursion
R f(0)=1 /Ibase case

int f8() {... 8(); ...} int factorial (n)

These are basically never ending calls if (n==0) /Ibase case
to one another return 1,
— can this happen? else

return n* factorial(n-1); //recursion

Recursion

e A function calling itself e Examples
o Directly call made to self power(n, a) = n*power(n,a-1)
Indirectly call made to self via another power(0)=1
function
o Indirectly call made to selfvia a f(n) = f(n-1) + f(n-2)
sequence of function calls f(0)=0, f(1)=1
e This is known as recursion — what function is this?
o Bothin mathematics and in
programming f(x) =X * g(x)

g(x) = 2 + f(x-1)

= f(X) =x*2 + x*f(x-1)

Recursion (contd.)

Recursive solution template

e You need to first define the base cases
(exit condition) for your function

e Then you write the recursive logic of the
rest of the function

e For breaking the call sequence of a

recursive function
o areturn statementis generally used with
some if condition
o You can also use if-else

Requires careful coding
Needs to make sure that your
program terminates

DIY Exercise using recursion:

o Implementthe GCD function

o Implementthe power function

o Implementsum of an integer
array
Search an elementin an array
Count the number of vowels in a
character array/string

Characters and ASCII codes

/I use for loop to print the capital letter from Ato Z

e Recall CompUter can only store for (int code = 65; code< 91; code++)
{
numbers printf (" \n The ASCII value of %c is %d ", code, code);
e Characters are interpreted as }

integers numbers called ASCII code Outputs:
The ASCII value of A is 65

e These codes are stored in place of The ASCII value of B is 66
The ASCII value of C is 67
each character The ASCII value of D is 68

o a-z, A-Z 0-9,special characters (!, @, #, $,
...), \n, \b, \r, \t, etc.

O The standard ASCII code ranges from O to = poing the same for small letters, another way
127 (7 bits long) for (int letter = 'a’; letter<="z"; letter++)

'I.'.He ASCII value of Z is 90

{
© The extended ASCII code ranges from 128 printf (" \n The ASCII value of %c is %d ", letter, letter);
to 255 (8 bits long) }

Character Arrays or Strings

e Character arrays (aka Strings) are very useful in storing data
o Even though they are basically integers underlying, but the range of the values are limited
o This allows to have some additional functionalities (for convenience, of course)

e Strings are declared and defined the same way as any other array types
o Since the values are in range of 0-127 (sometimes more, but still, limited), we have the
convenience make some of the characters for special use such as:
m newline(\n)
m backspace (\b), etc.
o Inthe case of character arrays we use a special character called the null character
m Represented as \O’ (backslash-zero)
m Asciivalue of this character is O
m It prints nothing on the computer screen

Strings - Initialization

e charch="a)

e charch_arr[10] ={'S’, ‘0, ‘U, 'm’, ‘@, ‘d’, 7, ‘p’, \0};

e char name[10] = “Soumadip”; /lthe above one is equivalent
o This type of initialization makes sure that the null character is appended atthe end

e String is basically short for “a string of characters”
o A single character in C is written within single quotese.g. ‘a’, ‘3’, ‘Z’, ‘%’, etc.

LEI 11

o A string is written in C within double quotes e.g. “a_string”, “with spaces”, “and with $”, etc.

e Scanf also provides a shortcut for strings format %s
o scanf (“%s”, ch_arr); = this allows you to read a string from user (without spaces)
o scanf ("%[An"]%*c", ch_arr); < %s is equivalent to this, is a blank space
m /‘This tells scanf to read characters as long as a newline (\n) or a space () is not
encountered
o Similarly, scanf ("%[N\n]%*c", ch_arr); « reads a string with spaces until a newline(\n)

Next Week...

e More on strings
e User defined datatypes

	Slide 1: Introduction to Computing MCS1101B Lecture 6
	Slide 2: Recap
	Slide 3: Pointers (recap)
	Slide 4: Functions and Pointers (refresher)
	Slide 5: Array and Functions (refresher)
	Slide 6: Array (contd.)
	Slide 7: Passing Array to Functions
	Slide 8: Passing Array to Functions – Two ways
	Slide 9: Functions Calling Functions (type 1)
	Slide 10: Functions Calling Functions (type 2)
	Slide 11: Recursion
	Slide 12: Recursion (contd.)
	Slide 13: Characters and ASCII codes
	Slide 14: Character Arrays or Strings
	Slide 15: Strings - Initialization
	Slide 16: Next Week…

