
Introduction to Computing
MCS1101B
Lecture 9

By
Soumadip Biswas

Associate Professor, IEM

Recap

● Pointers
○ Value
○ Name
○ Address
○ Size and type of pointers

● Array and pointers
● Function and pointers

● Functions calling functions
● Recursion
● Passing Array to functions

○ Problems with sending size
● Character Array
● Strings

Character Arrays or Strings

● Character arrays (aka Strings) are very useful in storing data
○ Even though they are basically integers underlying, but the range of the values are limited
○ This allows to have some additional functionalities (for convenience, of course)

● Strings are declared and defined the same way as any other array types
○ Since the values are in range of 0-127 (sometimes more, but still, limited), we have the

convenience make some of the characters for special use such as:
■ newline(\n)
■ backspace (\b), etc.

○ In the case of character arrays we use a special character called the null character
■ Represented as ‘\0’ (backslash-zero)
■ Ascii value of this character is 0
■ It prints nothing on the computer screen

Strings - Initialization

● char ch = ‘a’;
● char ch_arr1[3] = {‘S’, ‘D’, ‘B’};
● char ch_arr2[5] = {‘S’, ‘D’, ‘B’};
● char ch_arr3[10] = {‘S’, ‘o’, ‘u’, ‘m’, ‘a’, ‘d’, ‘i’, ‘p’, ‘\0’};
● char name[10] = “Soumadip”; //the above one is equivalent

○ This type of initialization makes sure that the null character is appended at the end
● String is basically short for “a string of characters”

○ A single character in C is written within single quotes e.g. ‘a’, ‘3’, ‘Z’, ‘%’, etc.
○ A string is written in C within double quotes e.g. “a_string”, “with spaces”, “and with

$”, etc.

Strings and scanf

● Scanf also provides a shortcut for strings format %s
○ scanf (“%s”, ch_arr); ⇒ this allows you to read a string from user (without

spaces)
○ scanf ("%[^\n]%*c", ch_arr); ⇐ reads a string with spaces until a newline(\n)

■ Note that, a newline character will always end scanning for scanf
irrespective of type

○ Either of the above will add a ‘\0’ to the end of the scanned characters -
making it a string

String Operations

● Normal assignments do not work on
strings (or any arrays for that matter)

● You can define different operation
on strings by writing your own
functions

○ Compare two strings for equality
○ Copy one string to another
○ Concatenate two strings
○ Check if a input string is integer or float

● Alternatively, you can choose to
#include a new header file called
string.h and use built-in functions for
such operations

○ strlen
■ int strlen(const char *str)

○ strcmp
■ int strncmp(const char *str1, const

char *str2, int n)
○ strstr

■ char* strstr(const char *haystack,
const char *needle)

○ strcat
■ char* strcat(char *dest, const char

*src)
○ Check the link for more.

https://www.ibm.com/docs/en/i/7.4?topic=files-stringh

Preprocessors

● Preprocessor is not a part of the
compiler

● It is a step in the compilation
process

● a C Preprocessor is just a text
substitution tool

● It instructs the compiler to do
required pre-processing before the
actual compilation

● They are also known as macro

Examples:

● #inlcude <string.h>
● #define SIZE 10
● #define SQUARE(x) ((x)*(x))
● #ifdef <macro>.. #endif
● etc.

User Defined Datatypes

● Sometimes basic data-types are not
convenient enough for solving
problems, e.g. 2D coordinates,
complex numbers, student
information, etc.

● You can define your own data-type
as per your requirements

● You need to use the keyword struct
for this purpose

● struct is short for structure

struct my_type {
member 1;
…
member n;

};
● struct my_type becomes your

data-type
● member can be any existing

data-type, i.e., int, float, int*,
char[10], struct another_type, etc.

Structure (contd.)

Example: representing a complex
number n = 1.0 + i 2.0

struct complex{
float x;
float y;

};

struct complex n;
n.x = 1.0;
n.y = 2.0;

● struct complex n1={1,2}, n2={2,3}, n3;
○ Declare and initialize similar to any type

● n3 = n2;
○ copies the value of n2 into n3

● Normal operations does not work
○ n1+n2, n1-n2
○ n1 == n2
○ You need to write your own functions

● struct complex add (struct complex n1, struct
complex n2)
{

struct complex ret;
ret.x = n1.x + n2.x;
ret.y = n1.y + n2.y;
return ret;

}

add (n1,n2)

Structure (contd.)

● Normal operations does not work
○ n1+n2, n1-n2
○ n1 == n2

● You need to write your own
functions and define your own
operations

○ Example code for addition of two
complex numbers is given ⇒

○ Similarly you can write your own
subtraction, multiplication, equality,
conjugate, etc.

● struct complex add (struct complex
n1, struct complex n2)
{

struct complex ret;
ret.x = n1.x + n2.x;
ret.y = n1.y + n2.y;
Return ret;

}

add (n1,n2)

Structures (contd.)

● You can choose to rename
(create an alias) for any datatype
using a keyword called typedef -
it is particularly convenient for
structures

● Example:
○ typedef struct complex Q;
○ Then, we could write =>

Q add (Q n1, Q n2) {...}
○ You can declare variables:

Q n1, n2; etc.

● Another way of writing typedef

typedef struct complex{
float x;
float y;

}Q;
● Size of a structure variable…

○ Is sum of the sizes of all its
member’s sizes

○ So, sizeof (Q) = sizeof (float)
+ sizeof (float)

Structures and pointers

● Since structures are just another
datatype - it is possible to create
pointers of it’s type

● struct complex *ptr; ⇒ is able to
contain the address of structure
variable

○ We could also write Q *ptr; ⇒since we
renamed it as Q

● So, sizeof(ptr) ⇒ ?

● How do you access the members
using pointers

○ Q *ptr; Q v = {10, 20};
○ ptr = &v;
○ *ptr.real ⇒ will not work
○ You can write (*ptr).real
○ Alternatively ptr->real can be used to

access the members using pointers

Next Class…

● Files
● Python introductions

