Introduction to Computing

MCS1101B
Lecture 7-8

By
Soumadip Biswas
Associate Professor, IEM

L((Q\
I

/
g
§

R(44/

Recap

e Array e Some example codes using array
o Declaration o Print all elements of array
o Initialization o Scan elements into array
o Assignment o Find the minimum from array
o Accessing elements of array o Search for a key element in an array
e Pointers

o Another type of variable

o Can hold memory address of some
variable

o The scanf case

Array and Functions - Refresher

o Array e Function
o intarr[8] ={12, 14,1, -2, 6, 91, 200, 10} o <ret type> <name> (param1, paramz2, ...)
o Print all elements of an array in reverse o Write a function for f(x) = x* + 10
order o Write a function for f(x, y) = (x + y)?
o Print elements of an array within a given o Write a function for f(n) = n!
range e.g. 2-6 o Afunction that returns the mean of all
o Print all elements of an array that are elements in an array of integers
positive

o Print all elements of an array that are
even

Pointers (recap)

e Pointers are a special variables
that can store memory locations
e Declaration of a pointer variable
o <type> *<name>;
o Variable value can be
accessed using <name>
e Access the value at the stored
address
o *<name>
o It will treat the value at the
stored location as the
declared <type>

int a=10; int *ptr; //this is an integer type pointer
printf (“%d”, a); =10

printf (“%d”, ptr); = <some garbage value>

printf (“%p”, ptr); = <the same garbage value in
the form of an memory address>

printf (“%p”, &ptr); = the address of the variable ptr
printf (“%p”, &a); = memory address of the
variable a

ptr = &a; //stores the address of a on ptr
printf (“%p”, ptr); = the address of the variable a
printf (“%d”, *ptr); = value of the integer at the
location of the variable a

printf (“%p”, &ptr); = the address of the variable
ptr; remains the same

Pointers

e Each memory cell (byte) has an unique address
e Each memory cell can hold a value
e Contiguous memory cells have sequential addresses

Value X— \L
42 10 Name
\\1 024

100 101 102 103 104 105 Address 500
_/

Pointers: Size and Arithmetic

e Size of a pointer variable
o It depends on the maximum possible
number value for address in a machine
o A 64-bit processor allows the machine
to have 64 bit address - so it needs 8
bytes to store that address
o sizeof(int*) = ?
o sizeof(char*) = ?
Never add floating points to pointers, Never add two

pointer variables, Never assign a direct value to a
pointer variable — these are meaningless

In general, don’t use pointer arithmetic in coding
unless there is no other way

e So what does it mean to add some

value to a pointer value?
o You can't directly add value since
address is constant
o You can however, add to a pointer
variable
o <type>* ptr + <int_val> is equivalent
to ptr + <int_val> * sizeof(<type>)

Example:

int* p, Xx;

p = &X; // say, address of x is 100 and sizeof(int) = 4
p+2 = 100 + 2 * sizeof(int) = 108
pt1=?p+10=?p-3=7?p-30="7

Array and Pointers

e Array elements are accessed using indexes
o intarr[10];
m Allocates a memory block equal to the size of 10 integers in total
m Elements accessed as arr[0], arr[1], etc.
o The arr is the address of the entire memory block; it is of type int* (read as integer pointer)
o Therefore It can also be accessed similar to pointers variables
o So *arris arr[0]
m How do you access the rest? — you use pointer arithmetic
o Adding 1 to a pointer variable means increasing the value of the pointer by the size of the type
of that pointer
m adding 1 to an int* variable means adding sizeof(int) to the value of the variable
o So, arr[1] == *(arr+1), arr[2] == *(arr+2), etc., i.e., arr[i] = *(arr+i)
o Also, arr+i = &arr]i]

Functions and Pointers

e Since variables passed to the So, recall Swap
functions are basically a copy
e Pointers to the variables are used void swap (int a, int b) void swap (int *a, int *b)

instead of a variable to pass the { {
reference to a variable - only when Int tmp; Int tmp;
required tm_p @ imE: &
o Addresses of the variable is copied a=b; *a =D
o Changes made by function are done to b = tmp; b = tmp;
the memory address } }

o So when function exits, it only forgets
the memory location and not the
changes made to that location

Passing Array to Functions

Array is a memory block Example:
e Array variable is basically the first e intA[10];
address of the entire memory block ¢ sjzeof (A) = sizeof (int)*10
e Array type is how you access each o (g f(A)
element in the memory block
e The size of the block is known only A function
to the function the array is defined
in
e If you pass array to a function, only {
the address of the memory block is sizeof (arr) = sizeof (int")
copied, and nothing else }

e void f (int arrf])

Passing Array to Functions - Alternative way

Assume Another function
sizeof(int) = 4 and sizeof (int*) = 8 e void f2 (int *arr)

e IintA[10]; {

e sizeof (A) = 410 =40 ,

o Callf(A) sizeof (arr) = ?

e Call f2(A) }

So, to pass an array properly you need

Afunction to pass the size (desired) of the array as

e void f (int arrf])

{ well.

sizeof (arr) = sizeof (int)=8 ® Vvoidf(intarr]], intn)
} e void f2 (int *arr, int n)

Functions Calling Functions

o intf1(){..} o intfe(){..f7();...}
o intf2() o intf7(){...f6(); ...}

{...

f1(); e intf8(){..f8(); ...}

.}

e intf3(){..f2(); ...} These are basically never ending
calls to one another

o intfd(){...f3(); ...} —can this happen?

o intf5(){... f2(); ...}

Recursion

e Afunction calling itself
o Directly call made to self
Indirectly call made to self via another
function
o Indirectly call made to self via a
sequence of function calls

e This is known as recursion
o Both in mathematics and in
programming

Example (math)
o f(n) = n*f(n-1), f(0)=1

o f(n)=f(n-1) + f(n-2), f(0)=0, f(1)=1
— what function is this?

o f(x)=x%*g(x), g(x) =2+ f(x-1)
= f(x)=2*x+2*f(x-1)

Recursion (contd.)

Requires careful coding

Needs to make sure that your program terminates

You need to first define the base cases (exit condition) for your function
Then you write the logic of the rest of the function

For breaking the call sequence of a recursive function
o areturn statement is generally used with some if condition
o You can also use if-else

Exercise:

o Implement the factorial function using recursion
o Implement the gcd function using recursion

Character Arrays or Strings

e Character arrays (aka Strings) are very useful in storing data

o Even though they are basically integers underlying, but the range of the values are limited
o This allows to have some additional functionalities (for convenience, of course)

e Strings are declared and defined the same way as any other array types
o Since the values are in range of 0-127 (sometimes more, but still, limited), we have the
convenience make some of the characters for special use such as:
m newline(\n)
m backspace (\b), etc.
o Inthe case of character arrays we use a special character called the null character
m Represented as \0’ (backslash-zero)
m Ascii value of this characteris 0
m It prints nothing on the computer screen

Strings - Initialization

e charch="a’;
e charch_arr[10]={'S’, ‘0’, ‘U, 'm’, ‘@, ‘'d’, ', ‘p’, \0'};
char name[10] = Soumadlp ; //the above one is equivalent

o This type of initialization makes sure that the null character is appended at the end

e String is basically short for “a string of characters”
o Asingle character in C is written within single quotes e.g. ‘a, '3, 'Z, %, etc.
o Astring is written in C within double quotes e.g. “a_string”, “with spaces”, “and with $”, etc.

e Scanf also provides a shortcut for strings format %s
o scanf (“%s”, ch_arr); = this allows you to read a string from user (without spaces)
o scanf ("%["]%*c", ch_arr); < %s is equivalent to this, is a blank space
m This tells scanf to read characters as long as a space () is not encountered
o Similarly, scanf ("%[*\n]%*c", ch_arr); < reads a string with spaces until a newline(\n)
o Note that, a newline character will always end scanning for scanf irrespective of type

Next Week...

e You will have Midsem :-)
e All the best
e Prepare well.

