
Introduction to Computing
MCS1101B
Lecture 7-8

By
Soumadip Biswas

Associate Professor, IEM

Recap

● Array
○ Declaration
○ Initialization
○ Assignment
○ Accessing elements of array

● Pointers
○ Another type of variable
○ Can hold memory address of some

variable
○ The scanf case

● Some example codes using array
○ Print all elements of array
○ Scan elements into array
○ Find the minimum from array
○ Search for a key element in an array

Array and Functions - Refresher

● Array
○ int arr[8] = {12, 14, 1, -2, 6, 91, 200, 10}
○ Print all elements of an array in reverse

order
○ Print elements of an array within a given

range e.g. 2-6
○ Print all elements of an array that are

positive
○ Print all elements of an array that are

even

● Function
○ <ret_type> <name> (param1, param2, …)
○ Write a function for f(x) = x2 + 10
○ Write a function for f(x, y) = (x + y)2

○ Write a function for f(n) = n!
○ A function that returns the mean of all

elements in an array of integers

Pointers (recap)

● Pointers are a special variables
that can store memory locations

● Declaration of a pointer variable
○ <type> *<name>;
○ Variable value can be

accessed using <name>
● Access the value at the stored

address
○ *<name>
○ It will treat the value at the

stored location as the
declared <type>

● int a=10; int *ptr; //this is an integer type pointer
● printf (“%d”, a); ⇒ 10
● printf (“%d”, ptr); ⇒ <some garbage value>
● printf (“%p”, ptr); ⇒ <the same garbage value in

the form of an memory address>
● printf (“%p”, &ptr); ⇒ the address of the variable ptr
● printf (“%p”, &a); ⇒ memory address of the

variable a
● ptr = &a; //stores the address of a on ptr
● printf (“%p”, ptr); ⇒ the address of the variable a
● printf (“%d”, *ptr); ⇒ value of the integer at the

location of the variable a
● printf (“%p”, &ptr); ⇒ the address of the variable

ptr; remains the same

Pointers

● Each memory cell (byte) has an unique address
● Each memory cell can hold a value
● Contiguous memory cells have sequential addresses

100 101 102 103 104 105

Value
… 42 10

Address

Name

500

1024

x

Pointers: Size and Arithmetic

● Size of a pointer variable
○ It depends on the maximum possible

number value for address in a machine
○ A 64-bit processor allows the machine

to have 64 bit address - so it needs 8
bytes to store that address

○ sizeof(int*) ⇒ ?
○ sizeof(char*) ⇒ ?

● So what does it mean to add some
value to a pointer value?

○ You can’t directly add value since
address is constant

○ You can however, add to a pointer
variable

○ <type>* ptr + <int_val> is equivalent
to ptr + <int_val> * sizeof(<type>)

Example:
int* p, x;
p = &x; // say, address of x is 100 and sizeof(int) = 4
p+2 ⇒ 100 + 2 * sizeof(int) = 108
p+1 = ? p+10 = ? p-3 = ? p-30 = ?

Never add floating points to pointers, Never add two
pointer variables, Never assign a direct value to a

pointer variable – these are meaningless

In general, don’t use pointer arithmetic in coding
unless there is no other way

Array and Pointers

● Array elements are accessed using indexes
○ int arr[10];

■ Allocates a memory block equal to the size of 10 integers in total
■ Elements accessed as arr[0], arr[1], etc.

○ The arr is the address of the entire memory block; it is of type int* (read as integer pointer)
○ Therefore It can also be accessed similar to pointers variables
○ So *arr is arr[0]

■ How do you access the rest? → you use pointer arithmetic
○ Adding 1 to a pointer variable means increasing the value of the pointer by the size of the type

of that pointer
■ adding 1 to an int* variable means adding sizeof(int) to the value of the variable

○ So, arr[1] == *(arr+1), arr[2] == *(arr+2), etc., i.e., arr[i] = *(arr+i)
○ Also, arr+i = &arr[i]

Functions and Pointers

● Since variables passed to the
functions are basically a copy

● Pointers to the variables are used
instead of a variable to pass the
reference to a variable - only when
required

○ Addresses of the variable is copied
○ Changes made by function are done to

the memory address
○ So when function exits, it only forgets

the memory location and not the
changes made to that location

void swap (int a, int b)
{

int tmp;
tmp = a;
a = b;
b = tmp;

}

void swap (int *a, int *b)
{

int tmp;
tmp = *a;
*a = *b;
*b = tmp;

}

So, recall Swap

Passing Array to Functions

● Array is a memory block
● Array variable is basically the first

address of the entire memory block
● Array type is how you access each

element in the memory block
● The size of the block is known only

to the function the array is defined
in

● If you pass array to a function, only
the address of the memory block is
copied, and nothing else

Example:
● int A [10];
● sizeof (A) ⇒ sizeof (int)*10
● Call f(A)

A function
● void f (int arr[])

{
sizeof (arr) ⇒ sizeof (int*)

}

Passing Array to Functions - Alternative way

Assume
sizeof(int) = 4 and sizeof (int*) = 8
● int A [10];
● sizeof (A) ⇒ 4*10 = 40
● Call f(A)
● Call f2(A)

A function
● void f (int arr[])

{
sizeof (arr) ⇒ sizeof (int*) = 8

}

Another function
● void f2 (int *arr)

{
sizeof (arr) ⇒ ?

}
So, to pass an array properly you need
to pass the size (desired) of the array as
well.
● void f (int arr[], int n)
● void f2 (int *arr, int n)

There is an
exception to this

rule for char array
– we will discuss

that later

Functions Calling Functions

● int f1() {...}
● int f2()

{...
f1();

…}
● int f3() {... f2(); …}

● int f4() {... f3(); …}
● int f5() {... f2(); …}

● int f6() {... f7(); …}
● int f7() {... f6(); …}

● int f8() {... f8(); …}

These are basically never ending
calls to one another

→can this happen?

Recursion

● A function calling itself
○ Directly call made to self
○ Indirectly call made to self via another

function
○ Indirectly call made to self via a

sequence of function calls
● This is known as recursion

○ Both in mathematics and in
programming

● Example (math)
○ f(n) = n*f(n-1), f(0)=1

○ f(n) = f(n-1) + f(n-2), f(0)=0, f(1)=1
→ what function is this?

○ f(x) = x * g(x), g(x) = 2 + f(x-1)

⇒ f(x) = 2 * x + 2 * f(x-1)

Recursion (contd.)

● Requires careful coding
● Needs to make sure that your program terminates
● You need to first define the base cases (exit condition) for your function
● Then you write the logic of the rest of the function
● For breaking the call sequence of a recursive function

○ a return statement is generally used with some if condition
○ You can also use if-else

● Exercise:
○ Implement the factorial function using recursion
○ Implement the gcd function using recursion

Character Arrays or Strings

● Character arrays (aka Strings) are very useful in storing data
○ Even though they are basically integers underlying, but the range of the values are limited
○ This allows to have some additional functionalities (for convenience, of course)

● Strings are declared and defined the same way as any other array types
○ Since the values are in range of 0-127 (sometimes more, but still, limited), we have the

convenience make some of the characters for special use such as:
■ newline(\n)
■ backspace (\b), etc.

○ In the case of character arrays we use a special character called the null character
■ Represented as ‘\0’ (backslash-zero)
■ Ascii value of this character is 0
■ It prints nothing on the computer screen

Strings - Initialization

● char ch = ‘a’;
● char ch_arr[10] = {‘S’, ‘o’, ‘u’, ‘m’, ‘a’, ‘d’, ‘i’, ‘p’, ‘\0’};
● char name[10] = “Soumadip”; //the above one is equivalent

○ This type of initialization makes sure that the null character is appended at the end
● String is basically short for “a string of characters”

○ A single character in C is written within single quotes e.g. ‘a’, ‘3’, ‘Z’, ‘%’, etc.
○ A string is written in C within double quotes e.g. “a_string”, “with spaces”, “and with $”, etc.

● Scanf also provides a shortcut for strings format %s
○ scanf (“%s”, ch_arr); ⇒ this allows you to read a string from user (without spaces)
○ scanf ("%[^]%*c", ch_arr); ⇐ %s is equivalent to this, is a blank space

■ This tells scanf to read characters as long as a space () is not encountered
○ Similarly, scanf ("%[^\n]%*c", ch_arr); ⇐ reads a string with spaces until a newline(\n)
○ Note that, a newline character will always end scanning for scanf irrespective of type

Next Week…

● You will have Midsem :-)
● All the best
● Prepare well.

