
Introduction to Computing
MCS1101B
Lecture 6

By
Soumadip Biswas

Associate Professor, IEM

Array

● Many applications require multiple
data items that have common
characteristics

○ In mathematics, we often express such
groups of data items in indexed form:

■ x1, x2, x3, …, xn
● Array is a data structure which can

represent a collection of data items
which have the same data type
(float/int/char/…)

Example:

int n, A[100], i;
printf(“How many numbers to read? “);
scanf(“%d”, &n);

for (i = 0; i < n; ++i)
 scanf(“%d”, &A[i]);
for (i = 0; i < n; ++i)
 printf(“%d”, &A[i]);

Array(contd.)

● Declaration
○ <type> <name>[<no_of_elements>]
○ int a[100];
○ Float b[20];

● Initialization
○ int a[5] = {2,4,5,2,6};
○ int b[4] = {1,3,5}

● Accessing an element of array
○ a[2] →5
○ b[0] →1
○ b[3] → ?
○ a[5] →?

● Assignment of value later on in the
program

○ It is same as a normal variable
○ b[3] = 3.14;
○ a[2] = 1000;

● A single variable has a name
● An array variable has a <name>

○ It’s a collection of single variables
○ Variables are accessed using <index>
○ Therefore, <name>[<index>] is a

specific variable in an array

Array (contd)

● Some Basic Examples
○ Print all elements of an

array
○ Scan elements into an

array
○ Copy elements of on

array into another
○ Sum of all elements in

an array

● Some more examples
○ Find minimum of a set

of 10 numbers
○ Write the code in a way

so that the code works
for a set of any given
number (i.e. not only
10)

Array (contd)

Write the code in a way so that the code works for a set of
any given number (i.e. not only 10)
● Recall const qualifier

○ const int size = 10;
● Another way …

○ #define SIZE 10
○ This is called a preprocessor/macro

Searching for an Element (key) in an Array

● You have an array full of integer elements
○ Can be hard coded
○ Can be user input
○ Can be redirected (using <) from some file <we learn this today>
○ Can be read from file <we will see how later on>

● You take an integer (key) user input from user
● Search through the array to check if the key exists in the array

○ Go through the array one element at a time in using a loop
○ Check is the element matches the key or not

● Print appropriate message to show the result of the exercise
● This is called a linear search

Functions (recall)

Passing of variables

● Variables values are copied when
then are passed (by calling) to a
function

● The actual variables are not passed
● So a change made to a variable

within a function will not reflect in
the variable at the end of the caller

● But scanf, which is a function, is
able to change the values of a local
variable

○ How does it do it?
● Recall the AddressOf (&) operator

○ scanf (“%d”, &a);
○ it sends (copies) the memory address of

a variable
○ scanf makes change to that memory

location
○ thereby changing the value of the

variable

Pointers

● Pointers are a special variables
that can store memory locations

● Declaration of a pointer variable
○ <type> *<name>;
○ Variable value can be

accessed using <name>
● Access the value at the stored

address
○ *<name>
○ It will treat the value at the

stored location as the
declared <type>

● int a=10; int *ptr; //this is an integer type pointer
● printf (“%d”, a); ⇒ 10
● printf (“%d”, ptr); ⇒ <some garbage value>
● printf (“%p”, ptr); ⇒ <the same garbage value in

the form of an memory address>
● printf (“%p”, &ptr); ⇒ the address of the variable ptr
● printf (“%p”, &a); ⇒ memory address of the

variable a
● ptr = &a; //stores the address of a on ptr
● printf (“%p”, ptr); ⇒ the address of the variable a
● printf (“%d”, *ptr); ⇒ value of the integer at the

location of the variable a
● printf (“%p”, &ptr); ⇒ the address of the variable

ptr; remains the same

Array and Pointers

● Array elements are accessed using indexes
○ int arr[10];

■ Allocates a memory block equal to the size of 10 integers in total
■ Elements accessed as arr[0], arr[1], etc.

○ The arr is the address of the entire memory block; it is of type int* (read as integer pointer)
○ Therefore It can also be accessed similar to pointers variables
○ So *arr is arr[0]

■ How do you access the rest? → you use pointer arithmatic
○ Adding 1 to a pointer variable means increasing the value of the pointer by the size of the type

of that pointer
■ adding 1 to an int* variable means adding sizeof(int) to the value of the variable

○ So, arr[1] == *(arr+1), arr[2] == *(arr+2), etc., i.e., arr[i] = *(arr+i)
○ Also, arr+i = &arr[i]

Functions and Pointers

● Since variables passed to the
functions are basically a copy

● Pointers to the variables are used
instead of a variable to pass the
reference to a variable - only when
required

○ Addresses of the variable is copied
○ Changes made by function are done to

the memory address
○ So when function exits, it only forgets

the memory location and not the
changes made ot that location

void swap (int a, int b)
{

int tmp;
tmp = a;
a = b;
b = tmp;

}

void swap (int *a, int *b)
{

int tmp;
tmp = *a;
*a = *b;
*b = tmp;

}

So, Let’s recall Swap

Functions Calling Functions

● int f1() {...}
● int f2()

{...
f1();

…}
● int f3() {... f2(); …}

● int f4() {... f3(); …}
● int f5() {... f2(); …}

● int f6() {... f7(); …}
● int f7() {... f6(); …}

● int f8() {... f8(); …}

● These are basically never ending
calls to one another

→can this happen?

Recursion

● A function calling itself
○ Directly call made to self
○ Indirectly call made to self via another

function
○ Indirectly call made to self via a

sequence of function calls
● This is known as recursion

○ Both in mathematics and in
programming

● Example (math)
○ f(n) = n*f(n-1), f(0)=1

○ f(n) = f(n-1) + f(n-2), f(0)=0, f(1)=1
→ what function is this?

○ f(x) = x * g(x), g(x) = 2 + f(x-1)

⇒ f(x) = 2 * x + 2 * f(x-1)

Recursion (contd.)

● Requires careful coding
● Needs to make sure that your program terminates
● You need to first define the base cases (exit condition) for your function
● Then you write the logic of the rest of the function
● For breaking the call sequence of a recursive function

○ a return statement is generally used with some if condition
○ You can also use if-else

● Exercise:
○ Implement the factorial function using recursion
○ Implement the gcd function using recursion

In The Next Class…

● You will learn about array and pointers
● You will learn about structures
● You will learn about files

