Introduction to Computing

MCS1101B
Lecture 6

By
Soumadip Biswas
Associate Professor, IEM

L((Q\
I

/
g
§

R(44/

Array

e Many applications require multiple Example:
data items that have common

characteristics int n, A[100], i;
o In mathematics, we often express such printf("How many numbers to read? “);

groups of data items in indexed form: scanf(“%d”, &n);
m X1, x2,x3, ..., xn

e Array is a data structure which can for (i = 0; i < n; ++i)
represent a collection of data items scanf(“%d”, &AJi]);
which have the same data type for (i=0;i<n; ++i)
(float/int/charl...) printf(*%d”, &A[i]);

Array(contd.)

e Declaration e Assignment of value later on in the
o <type> <name>[<no_of elements>] program
o inta[100]; o lItis same as a normal variable
o Float b[20]; o b[3] =3.14;
e |Initialization o a[2] = 1000;
o inta[5] ={2,4,5,2,6}; e Asingle variable has a name

o intb[4] ={1,3,5)

_ e An array variable has a <name>
e Accessing an element of array

o It's a collection of single variables

o a[2] -5 o Variables are accessed using <index>
o b[0] —1 o Therefore, <name>[<index>] is a

o b[3]—7? specific variable in an array

o a[5] —?

Array (contd)

e Some Basic Examples

O

O

O

Print all elements of an
array

Scan elements into an
array

Copy elements of on
array into another
Sum of all elements in
an array

e Some more examples
o Find minimum of a set

of 10 numbers

Write the code in a way
so that the code works
for a set of any given
number (i.e. not only
10)

Array (contd)

Write the code in a way so that the code works for a set of
any given number (i.e. not only 10)
e Recall const qualifier
o const int size = 10;
e Another way ...
o #define SIZE 10
o This is called a preprocessor/macro

Searching for an Element (key) in an Array

e You have an array full of integer elements

o Can be hard coded

o Can be user input

o Can be redirected (using <) from some file <we learn this today>
o Can be read from file <we will see how later on>

e You take an integer (key) user input from user

e Search through the array to check if the key exists in the array

o Go through the array one element at a time in using a loop
o Check is the element matches the key or not

e Print appropriate message to show the result of the exercise
e Thisis called a linear search

Functions (recall)

Passing of variables

Variables values are copied when
then are passed (by calling) to a
function

The actual variables are not passed
So a change made to a variable
within a function will not reflect in
the variable at the end of the caller

But scanf, which is a function, is
able to change the values of a local

variable
o How does it do it?

Recall the AddressOf (&) operator

o scanf (“%d”, &a);

o it sends (copies) the memory address of
a variable

o scanf makes change to that memory
location

o thereby changing the value of the
variable

Pointers

e Pointers are a special variables
that can store memory locations
e Declaration of a pointer variable
o <type> *<name>;
o Variable value can be
accessed using <name>
e Access the value at the stored
address
o *<name>
o It will treat the value at the
stored location as the
declared <type>

int a=10; int *ptr; //this is an integer type pointer
printf (“%d”, a); =10

printf (“%d”, ptr); = <some garbage value>

printf (“%p”, ptr); = <the same garbage value in
the form of an memory address>

printf (“%p”, &ptr); = the address of the variable ptr
printf (“%p”, &a); = memory address of the
variable a

ptr = &a; //stores the address of a on ptr
printf (“%p”, ptr); = the address of the variable a
printf (“%d”, *ptr); = value of the integer at the
location of the variable a

printf (“%p”, &ptr); = the address of the variable
ptr; remains the same

Array and Pointers

e Array elements are accessed using indexes
o intarr[10];
m Allocates a memory block equal to the size of 10 integers in total
m Elements accessed as arr[0], arr[1], etc.
o The arr is the address of the entire memory block; it is of type int* (read as integer pointer)
o Therefore It can also be accessed similar to pointers variables
o So *arris arr[0]
m How do you access the rest? — you use pointer arithmatic
o Adding 1 to a pointer variable means increasing the value of the pointer by the size of the type
of that pointer
m adding 1 to an int* variable means adding sizeof(int) to the value of the variable
o So, arr[1] == *(arr+1), arr[2] == *(arr+2), etc., i.e., arr[i] = *(arr+i)
o Also, arr+i = &arr]i]

Functions and Pointers

e Since variables passed to the So, Let’s recall Swap
functions are basically a copy
e Pointers to the variables are used void swap (int a, int b) void swap (int *a, int *b)

instead of a variable to pass the { {
reference to a variable - only when Int tmp; Int tmp;
required tm_p @ imE: &
o Addresses of the variable is copied a=b; *a =D
o Changes made by function are done to b = tmp; b = tmp;
the memory address } }

o So when function exits, it only forgets
the memory location and not the
changes made ot that location

Functions Calling Functions

o intfl1(){..} o intfe(){.. f7();...}
o intf2() o intf7(){...f6(); ...}
{...
1(); o intf8(){...f8(); ...}
..}
o intf3(){... f2(); ...} e These are basically never ending

calls to one another
o intfd(){... f3(); ... —can this happen?

e intf5(){..f2(); ...

—

Recursion

e Afunction calling itself
o Directly call made to self
Indirectly call made to self via another
function
o Indirectly call made to self via a
sequence of function calls

e This is known as recursion
o Both in mathematics and in
programming

Example (math)
o f(n) = n*f(n-1), f(0)=1

o f(n)=f(n-1) + f(n-2), f(0)=0, f(1)=1
— what function is this?

o f(x)=x%*g(x), g(x) =2+ f(x-1)
= f(x)=2*x+2*f(x-1)

Recursion (contd.)

Requires careful coding

Needs to make sure that your program terminates

You need to first define the base cases (exit condition) for your function
Then you write the logic of the rest of the function

For breaking the call sequence of a recursive function
o areturn statement is generally used with some if condition
o You can also use if-else

Exercise:

o Implement the factorial function using recursion
o Implement the gcd function using recursion

In The Next Class...

e You will learn about array and pointers
e You will learn about structures
e You will learn about files

