
Introduction to Computing
MCS1101B
Lecture 5

By
Soumadip Biswas

Associate Professor, IEM

Recap

● Control Statements
○ Branching
○ Looping

● Branching
○ if
○ if else
○ if else if else if …
○ ? :
○ Nested if else
○ switch

● Looping
○ while
○ for
○ do while
○ break, continue

Nested Loops: Printing a 2-D Figure

● How would you print the following
diagram?

* * * * * *
* * * * * *
* * * * * *
* * * * * *

● Nested Loops
○ break and continue with nested

loops

Sequence of Execution

● The flow of a program i.e. the
steps and branches can be
represented in graphically

● Represented using Flow chart
○ Example: a for loop ⇒
○ Let’s understand this on the

board

Functions

● A program segment that carries out
some specific, well-defined task

● Example
○ A function to add two numbers
○ A function to find the largest of n

numbers
● A function will carry out its intended

task whenever it is called or
invoked

○ Can be called multiple times

Functions (contd.)

● Examples
○ Print a banner
○ Factorial computation
○ Gcd computation

return-value-type function-name (parameter-list)

{

 declarations and statements

}

● A function definition has two parts:
○ The first line, called header
○ The body of the function
○ May or may not have a return value

Function Prototypes

● Compiler needs to know some details of a function(see list below)
before it is being used (called) in a program
○ Name of the function
○ Return type of the function
○ The sequence of the parameters-types (parameter names are

optional) of that function
○ The definition/body of the function is optional

● The collection of these minimum requirements is known as function prototype

Example

➢ Function prototype
➢ Start of function body

➢ Local variables
➢ A while loop

➢ Start of the loop block
➢ Statements

➢ End of loop block
➢ Return statement

➢ End of function body

int gcd (int A, int B)
{

int temp;
while ((B % A) != 0)
{

temp = B % A;
B = A;
A = temp;

}
return (A);
}

Functions (contd.)

Passing of variables

● Variables values are copied when
then are passed (by calling) to a
function

● The actual variables are not passed
● So a change made to a variable

within a function will not reflect in
the variable at the end of the caller

The return statement

● Return statement is optional
● Return type in the function

prototype must be present
● Return statement causes the

sequence of execution to return to
the caller

Scope of Variables

● Part of the program from which the value of the variable can be used
(seen)

● Scope of a variable - Within the block in which the variable is defined
○ Block = group of statements enclosed within { }

● Local variable – scope is usually the function in which it is defined
○ So two local variables of two functions can have the same name, but they are different

variables
● Global variables – declared outside all functions (even main)

○ scope is entire program by default, but can be hidden in a block if local variable of same
name defined

In The Next Class…

● You will learn about array and pointers
● You will learn more about functions

