Introduction to Computing

MCS1101B
Lecture 5

By
Soumadip Biswas
Associate Professor, IEM

L((Q\
I

/
g
§

R(44/

Recap

e Control Statements e Looping
o Branching o while
o Looping o for
o do while
o break, continue

e Branching

o if
if else
if else if else if ...
?:
Nested if else
switch

O O O O O

Nested Loops: Printing a 2-D Figure

e How would you print the following 4
diagram? o
* % % % %k * ::::*

X R XN
* % % % * %

Half Pyramid
* % % % % *
* % % % % % 3
e Nested Loops 5 b %

o break and continue with nested

loops * % % % %

Full Pyramid

* KX K X ¥
* K ¥ ¥ ¥
* ¥ * ¥

* * *

* *

*

Inverted
Half Pyramid

Inverted Full Pyramid

Hollow Inverted
Half Pyramid

* O ¥ X ¥ ¥

Hollow Full Pyramid

Sequence of Execution

e The flow of a program i.e. the
steps and branches can be
represented in graphically

e Represented using Flow chart
o Example: a for loop =
o Let’s understand this on the

board

Functions

e A program segment that carries out funcipnl.{)
some specific, well-defined task SR § / |
e Example , /
o Afunction to add two numbers funceionl () function? ()

\

o Afunction to find the largest of n {

numbers function (/ }

e A function will carry out its intended

—»| Zunction3 ()

task whenever it is called or function3() i
i - |
invoked]

o Can be called multiple times functiond.(-)

-

Functions (contd.)

e Examples e A function definition has two parts:
o Print a banner o The first line, called header
o Factorial computation o The body of the function
o Gcd computation o May or may not have a return value

return-value-type function-name (parameter-list)

{

declarations and statements

Function Prototypes

e Compiler needs to know some details of a function(see list below)
before it is being used (called) in a program
o Name of the function
o Return type of the function
o The sequence of the parameters-types (parameter names are
optional) of that function
o The definition/body of the function is optional
® The collection of these minimum requirements is known as function prototype

Example

> Function prototype int gcd (intA, int B)
> Start of function body {
> Local variables int temp;
> A while loop while ((B % A) 1= 0)
> Start of the loop block {
> Statements temp =B % A;
B=A;
A = temp;
> End of loop block }
> Return statement return (A);
> End of function body }

Functions (contd.)

Passing of variables The return statement
e \ariables values are copied when e Return statement is optional
then are passed (by calling) to a e Return type in the function
function prototype must be present
e The actual variables are not passed e Return statement causes the
e So achange made to a variable sequence of execution to return to
within a function will not reflect in the caller

the variable at the end of the caller

Scope of Variables

e Part of the program from which the value of the variable can be used
(seen)
e Scope of a variable - Within the block in which the variable is defined
o Block = group of statements enclosed within { }

e Local variable — scope is usually the function in which it is defined
o So two local variables of two functions can have the same name, but they are different
variables
e Global variables — declared outside all functions (even main)

o scope is entire program by default, but can be hidden in a block if local variable of same
name defined

In The Next Class...

e You will learn about array and pointers
e You will learn more about functions

