
Introduction to Computing
MCS1101B
Lecture 3-4

By
Soumadip Biswas

Associate Professor, IEM

Recap

● Expressions
○ Arithmetic
○ Assignment
○ Logical

● Special operators
○ SizeOf
○ AddressOf (&)

● Typecasting
● Statements

○ Declaration
○ Assignment
○ Control

■ Branching
■ Looping

○ Input /Output

Conditional Statements

How do we specify conditions?

● Using expressions
○ non-zero value means

condition is true
○ value 0 means condition is

false
● Usually logical expressions,

but can be any expression
○ The value of the expression

will be used

● Allow different sets of
instructions to be executed
depending on truth or falsity
of a logical condition

aka. Branching

The if Statement

if (expression)

compound statement;

if (expression)

statement;

The condition to be tested is any
expression enclosed in
parentheses. The expression is
evaluated, and if its value is
non-zero, the statement is
executed.

if (expression)
{

statement 1;
…
statement n;

}

if else Statement

if (expression)
statement / compound statement;

else if (expression)
statement / compound statement;

else
statement / compound statement;

if (expression)
statement / compound statement;

else
statement / compound statement;

Example:
Grade Computation
Find the larger of two numbers
Find the largest of three numbers

Nested if else

● It is not necessary for all if statements to have
an else part

● Every else gets matched to the closest
preceding unmatched if statement

● It’s very easy to create confusion while writing
a nested if-else

● So it is always a good idea to use parentheses
to avoid any ambiguity

Ambiguous statement

if (expression)
if (expression)

statement;
else

statement;

The conditional operator ?:

int x = 10, y = 20, max;

if (x > y)

max = x;

else

max = y;

Another way of writing if else statement

● <condition>?<expression1>:<expression2>;

○ If condition is true then expression1 is
executed

○ If condition is false then expression2 is
executed

…used for convenience
Using conditional operator…

max = (x > y) ? x : y;

The switch statement

● This statement can be used instead
of writing lot of if else statement

● You can provide statements
different cases

● switch statement with match the
provided value with the case
number and execute statements
from that point onwards

● All statements below a matched
case is executed

switch (<expression>)
{

case <const-expr> : <statements>
case <const-expr> : <statements>
…
case <const-expr> : <statements>
default : <statements>

}

Example: Evaluation of expressions

The break statement

● The break statement takes the
sequence of execution out of the
block

○ Works with looping as well
○

● switch-case does not work exactly
like a if else if else if…

● We use break statements to mimic
the behaviour

switch (<integer_value>)
{

case <integer> : <statements>
break;

case <integer> : <statements>
break;

…
case <integer> : <statements>

break;
default : <statements>

}

Looping Statements

● Group of statements that
are executed repeatedly
while some condition
remains true

● Each execution of the
group of statements is
called an iteration of the
loop

Example:

● Read 5 integers and display
their sum

● Find the smallest number
among 100 integers

● Grade computation for
entire class

The while statement

● The condition to be tested is any
expression enclosed in
parentheses

● The expression is evaluated, and if
its value is non-zero, the statement
is executed

● Then the expression is evaluated
again and the same thing repeats

● The loop terminates when the
expression evaluates to 0

while (expression)

statement;

while (expression)

<Compound statement>

The while statement (contd.)

Examples

● Sum of the first N natural numbers
● Sum of the squares of the first N natural numbers
● Compute GCD of two numbers
● Calculate maximum of many positive numbers
● Compute the sum of digits of a number

The for statement

for (expr1; expr2; expr3)

statement;

for (expr1; expr2; expr3)

<Compound statement>

● expr1 (init) : initialize
parameter(s)

● expr2 (test): test condition, loop
continues if expression is non-0

● expr3 (update): used to alter
the value of the parameter(s)
after each iteration

● statement (body): body of loop

The for statement (contd.)

Example:

Computing Factorial

Equivalence of for and while ⇒

Sum of N natural numbers

for (expr1; expr2; expr3)
 statement;

expr1;
while (expr2)
{
 statement
 expr3;
 }

The do while statement

● Another way of doing
looping

● Used for convenience
● Example

○ Decimal to binary
conversion

do

statement;

while (expression);

do

{

Block of statements;

} while (expression);

Illustrative Example

Infinite loops and the break statement

● while (1)

{ statements }

● for (; ;)

{ statements }

● do

{ statements } while (1);

● Use break statement to come out of
the loop body

○ can be used with while, do
while, for, switch

○ does not work with if, else
● Causes immediate exit from a

while, do/while, for or switch
structure

● Program execution continues
with the first statement after
the structure

The continue statement

● Skips the remaining statements in the body of a while, for or
do/while structure
○ Proceeds with the next iteration of the loop

● while and do/while loop
○ Loop-continuation test is evaluated immediately after the continue

statement is executed
● for loop

○ expr3 is evaluated, then expr2 is evaluated

Nested Loops: Printing a 2-D Figure

● How would you print the following
diagram?

* * * * * *
* * * * * *
* * * * * *
* * * * * *

● Nested Loops
○ break and continue with nested

loops

Sequence of Execution

● The flow of a program i.e. the
steps and branches can be
represented in graphically

● Represented using Flow chart
○ Example: a for loop ⇒
○ Let’s understand this on the

board

Functions

● A program segment that carries out
some specific, well-defined task

● Example
○ A function to add two numbers
○ A function to find the largest of n

numbers
● A function will carry out its intended

task whenever it is called or
invoked

○ Can be called multiple times

Functions (contd.)

● Examples
○ Print a banner
○ Factorial computation
○ Gcd computation

return-value-type function-name (parameter-list)

{

 declarations and statements

}

● A function definition has two parts:
○ The first line, called header
○ The body of the function
○ May or may not have a return value

In The Next Class…

● You will learn about array and pointers
● You will learn more about functions

