Introduction to Computing

MCS1101B
Lecture 2

By
Soumadip Biswas
Associate Professor, IEM

L((Q\
I

/
g
§

R(44/

Recap

e Computation

o How do computers compute - Von Neumann Architecture
e How do computer store data - memory

o Bits and Bytes

o There is a unique memory address for each Byte
e \What can computer store - numbers

o Binary number system

o Operations on binary numbers

e Data, Information

Recap (contd.)

e Computer Programming

e Computer Programming Languages
o Machine language - set of instructions
o High-level programming languages - C, C++, Python
e Steps of Programming
o Write a program using high-level programming language
o Compile a program using a compiler to get the machine understandable code
o Execute the program on machine
o Anatomy of Programming

Anatomy of Programming

e You have a problem to solve
o You take steps to solve the problem

e \What are these steps, really?
o Represent the problem formally
o Take a decision
m Some tasks based on the decision
m Evaluate outcomes
o Repeat until problem is solved.

Structure of a C Program

e They are a collection of functions

e Exactly one special function called “main” which must
be present

e Each function has statements

o e.g. declaration, assignment, condition check, looping
o Statements are executed one by one

The Customary First C Code

The preprocessor

A function definition PigiSEUEETENQekks
Start of the function B

A comment /* my first program in C */
A function call ("Hello, World! \n");
A return value return 9;

End of the function

Things One Might Use in C Programming

e Variables
e Constants

e EXxpressions
o Arithmetic, Logical, Assignment

e Statements

o Declaration, Assignment,
o Control Structures - conditional branching, looping

Arrays
Pointers
Functions
Structures

Variables and Constants

e Avariables has a name and a type

e Name
o Asequence of letter and digits with first symbol being a letter or *_
e Types of Variables
o int, float, double, char, struct, pointer, array, void, etc
e \ariables stored in memory
o Therefore, each variable has an unique address
o Each type has a predefined size - typically they have standard values, but sometimes it may
depend on the software/system you are using
e Constants are basically read-only variables
o Values, once assigned, cannot be changed

Expressions

e \ariables and constants
linked with operators

e Every expression
evaluates to a value

e Arithmetic expressions

(@)

(@)

Uses arithmetic operators
Can evaluate to any value

e Logical expressions

(@)

(@)

Uses relational and logical operators
Evaluates to O (false) or 1 (true) only

e Assignment expressions

(@)

(@)

Uses arithmetic operators
Evaluates to value depending upon
assignment

Arithmetic Operators

e Binary operators e All operator except % can be

o Addition + used with operands of any data

o Subtraction — types

o Multiplication * o int, float, double, char

o Division /

Modulus %

X ’ e % can be used only with integer

e Unary operators

operands
o Plus + P

o Minus —

Operator Precedence

In decreasing order of priority e For same priority evaluation is done

from left to right as they appear
o Parenthesis ()

o Unary minus —
o Multiplication * , Division / and e Parenthesis may be used to

Modulus % change the precedence of operator
o Addition + and Subtraction — evaluation

Arithmetic Expressions (contd.)

Examples Let’s test your understanding ...

e 1+2"3=1+(2"3)=7 e atb+c*d'e = ?
e 8/2+2*3=(8/2)+(2*3) o 10/5=7

= 10 e inta=10,b=20,c=30,d;
o a-b+c+c = (((a-b)+c)+d) float f;
o a*-b+d%e—f= a*(- e

. o d=ab;d=7?
b)+(d%e)-f o d=c/b:d=?
o f=chbf=7?

Assignment Operator

|-value = r-value

|-value must be a variable where you can assign data

r-value can be any valid for of expression

The types of both side should usually be the same

In the other case, r-value gets internally converted to the type of I-value
o This can cause problems

o e.g.inta;ja=2%*3.3;=a=6andnot6.6

Assignment Expression

e Uses the assignment operator =

e General syntax: variable_name =
expression

e [-value =r-value

e The value of the assignment
expression is the value assigned to
the I-value

Examples:

o a=/7>7

o b=2"7-11=3

o c=x+y*3-z= whatever
value the arithmetic
expression x + y*3 - z
evaluates to; depends on the
value of X, y, z

o a=a+5=12

Assignment Expression (contd.)

e Several variables can be e Multiple assignment operators
assigned to the same value are right-to-left associative
using multiple assignment e Each of the assignment
operators expressions are evaluates to a

o a=b=c=10 value and that value
o K== E propagates to the next one

o ...and soon

Assignment Operator Variations

e There are shortcuts for simple e Let's test your understanding

assignments
o += -= *=, /:, %= e Int d, b, C,
Case 1
o a=b=c=5
o a=?b=?c=?

e at=b=a=a+b e (Case?2
e a*=2=>a=a*2 o a=3; b=5;
e ...and soon. o a+=Db+=1;

o a=?b="7?

Two More Variations

e [wo unary variations which e Both pre and post operators

Increments or decrement the increment/decrement the
value of the operand by 1 value, but there is an
e Pre-increment operator, important difference in the
Post-increment operator ++ evaluated value of that
e Pre-decrement operator, expression
Post-decrement operator -- o a=3;
o at+=>a=a+1 o at+ =3

o ++a=a=a+1 o ++a=4

Logical Expressions

e Uses relational and logical e Relational operators
operators o > >=

e This generally specifies a o < <=
condition which can be

either true or false
... compares two quantities

Logical Expressions (contd.)

e Examples

0 X<=y
O X ==

o 1==

O X==y==

o (X+y<B)=x+y<6

Evaluates to either O or 1

o 0 = false

o 1 = true ; also non-zero
values

Arithmetic expressions are
evaluated first when on either
side of a relational operator

Logical Operators

LOGICAL AND LOGICAL OR LOGICAL NOT
&& | !
o 0&&0=0 e 0&&0=0 o I0=1
e 0 &&non-zero =0 e 0 && non-zero = 1 e !non-zero= 0
e non-zero && 0 =0 e non-zero && 0 = 1 e aka. unary
e non-zero && e non-zero && negation operator

non-zero = 1 non-zero = 1

Logical Expressions (contd.)

Examples Let’s test your understanding

x =1,y =3, grades =B’ e (1M0)[| (10 +20!=200) = ?
e (M0)&& (10 +20!=200) = ?

o (x+y<6)|[(y>=9)="1 o (4>3)&& (100 !=200)= ?

o (x==y)&&(y!=5)=0

e !(grades =='A) =1

(x+y>6)[|(y>=9)=7
(x=y)&& (y==1)=7
grades =='B'= ?
X=3&&(y=4)=7?

Bitwise Operators

e Operators that permits operation on
individual bits

e Useful for low level programming
such as controlling hardware

... we will discuss this operators in more
details later on.

Bitwise AND
Bitwise OR

1s complement
Bitwise XOR
Left shift

Right shift

A Special Operator: AddressOf (&)

Remember that each variable is stored at a location with an
unique address

Putting & before a variable name gives the address of the
variable (where it is stored, not the value)

Can be put before any variable (with no blank in between)
o inta=8§;

o printf ("value of a = %d, address of a=%d", a, &a);

o printf ("value of a = %d, address of a=%p”, a, &a);

Another Special Operator: sizeof ()

This is a much used operator e
in C
It is an unary operator
It is used to compute the size
of its operand in compile
time
It can used on any data type
o sizeof (int), sizeof (char),
int a; sizeof (a), etc.

It can be used with an

expression as well — then it

returns the size of the final

value

o inta=2; double b=10.3;

o sizeof(a+b) =
sizeof(double)

Typecasting

e Remember the problem with division
o inta=10,b=20,c=30,d;floatf;
o f=c/bf=?
e The solution is to do the following
o Convert at least one of the operand to floating point
o f=c;f=30.0
o f/=b;orf=f1/b;f=1.50
e The shorthand of doing this is called typecasting
o f=((float)c)/b; f =1.50
o The type of ¢ has not changed but the evaluated value of (float)c is now a float
type

Typecasting (contd.)

e Not everything can be typecast to everything
o Casting a float to an integer will lose information since int
cannot store the fractional part
o Similarly int should not be typecast to char
e General rule
o Make sure the final type can store any value of the initial type

Statements in a C Program

e Parts of C program that tell the computer what to do

e Types of statements
o Declaration statements — Declares variables etc.
o Assignment statement — Assignment expression, followed by a ;
o Control statements — For branching and looping
m Branching - if-else, switch
m Looping - for, while, do while
o Input/Output — Read/print, like printf/scanf

Statements (contd.)

e Compound statements

o A sequence of statements enclosed within { and }

o Each statement can be an assignment statement, control
statement, input/output statement, or another compound
statement

o We will also call it block of statements sometimes
informally

In The Next Class...

You will learn about branching
You will learn about looping
You will learn about functions
You will learn about pointers

